
	 141	

CHAPTER	10:	TRUTH	TREES	
Recall	that	in	doing	truth	tables	the	long	way	we	were	reconstructing	truth	values	for	a	sentence	
or	set	of	sentences	in	every	possible	truth	value	assignment—and	that	in	doing	that	a	good	deal	
of	our	work	was	wasted.	In	testing	for	consistency,	for	example,	we	were	just	looking	for	a	row	
of	the	truth	table	in	which	all	the	sentences	were	true.	If	we	found	such	a	row	all	the	other	rows	
were	irrelevant.	But	we	had	to	do	the	complete	truth	table	because	if	there	was	no	row	in	which	
all	the	sentences	were	true	we	needed	to	determine	that.	Getting	a	‘yes’	answer	to	the	
consistency	question	was	easy:	just	find	a	row	in	which	all	the	sentences	get	T.	Getting	a	‘no’	
answer	was	tedious:	we	had	to	consider	all	the	possibilities—and	some	of	them	were	clearly	
irrelevant.	Consider	the	truth	table	we	did	to	test	for	consistency:	

A	 ∨	 B	 /	 ∼	 (A	 ≡	 B)	 /	 ∼	 B	

T	 T	 T	 	 F	 T	 T	 T	 	 F	 T	
T	 T	 F	 	 T	 T	 F	 F	 	 T	 F	

F	 T	 T	 	 T	 F	 F	 T	 	 F	 T	

F	 F	 F	 	 T	 F	 T	 F	 	 T	 F	

	

Consistent	or	inconsistent?	Consistent 

We	could	have	seen	straightaway	that	Row	4	was	a	non-starter	because	in	that	row	‘A	∨	B’	was	
false.	No	point	in	working	through	that	row,	plugging	in	Ts	and	Fs.	Similarly,	we	could	have	seen	
that	computing	truth	values	for	Row	1	was	also	a	waste	of	time	because	‘∼	(A	≡	B)’	is	false	in	the	
truth	value	assignment	that	that	row	represents.	We’re	only	interested	in	truth	value	
assignments	that	make	all	sentences	true	so,	for	starts	we	could	have	thrown	out	every	row	in	
which	any	of	the	sentences	was	are	false,	namely	Rows	1,	3,	and	4.	

This	is	essentially	what	truth	trees	do.	They	systematically	select	all	and	only	those	truth	value	
assignments	in	which	each	sentence	individually	is	true	and	put	them	together,	so	that	we	can	
determine	whether	there’s	a	truth	value	assignment	in	which	all	of	them	are	true	together.	To	
do	this,	we	grow	a	tree	with	branches	that	represent	truth	value	assignments	that	make	the	
sentence(s)	we’re	testing	true	according	to	tree	rules	that	represent	the	ways	of	making	each	of	
the	sentences	true.	With	one	exception,	these	rules	essentially	represent	conjunction	or	
disjunction.	We	can	think	of	them	as	logic	gates	through	which	Truth	flows	up	the	tree.	

To	see	how	this	works,	first	consider	a	conjunction,	‘p	•	q’.	To	make	it	true	we	need	Truth	
flowing	to	both	p	and	q.	So,	given	that	Truth	flows	up	the	tree,	we	can	represent	the	truth	
conditions	for	conjunction	like	this:	

p	•	q	
p	
q	



	 142	

Since	Truth	has	to	flow	through	both	conjuncts	to	make	the	conjunction	true,	we	hook	them	up	
in	series,	so	to	speak.	You’ve	may	have	seen	this	arrangement	in	Real	Life.	You	have	a	light	at	
the	top	of	the	stairs,	with	a	switch	down	stairs	and	another	up	stairs	hooked	up	in	series	so	that	
both	switches	have	to	be	on	for	the	light	to	go	one.	If	even	one	of	them	is	off	current	can’t	flow	
through,	so	no	light.	You	are	upstairs	and	want	to	turn	on	the	light,	but	no	go.	‘Oh	----!’,	you	
exclaim,	‘the	downstairs	switch	if	off’.	This	is	the	cheap	way	of	wiring	a	light	and	switches.	This	is	
conjunction.	

Then	there	is	the	expensive	way:	you	hook	up	those	switches	in	parallel,	so	that	if	either	one	of	
the	switches	is	on	current	flows	through	and	the	light	goes	on.	This	is	disjunction:	

	

	

	

	

	

To	make	‘p	∨	q’	true	we	just	need	truth	flowing	through	p	or	through	q	or	through	both	so	this	
represents	the	truth	conditions	for	disjunction.	Note,	we	don’t	need	an	additional	branch	with	
both	p	and	q	on	it.	This	arrangement	represents	all	three	ways	of	making	disjunction	true:	p	
true,	q	true	or	both	p	and	q	true.	

So	here,	in	these	diagrams,	you	have	the	tree	rules	for	conjunction	and	disjunction	respectively.	
It’s	easy	to	see	that	these	tree	rules	come	from	the	truth	tables	that	define	conjunction	and	
disjunction.	The	tree	rule	for	conjunction	is	non-branching:	it	shows	that	there’s	only	one	way	to	
make	conjunction	true,	viz.	if	both	of	the	conjuncts	are	true.	The	tree	rule	for	disjunction,	above,	
is	branching:	it	shows	that	there	is	more	than	one	way	to	make	disjunction	true.	The	branches	
represent	the	three	rows	of	the	truth	table	for	disjunction	in	which	it’s	true.	The	complete	tree	
rules	follow.	With	the	exception	of	the	Double	Negation	rule,	each	is	either	a	conjunction	rule	or	
disjunction	rule.	

	 	

p	 q	

p	v	q	



	 143	

1.1 TRUTH	TREE	RULES	
	

Double	Negation	
∼	∼	p	
p	

Conjunction	
p	•	q	
p	
q	

Negated-Conjunction	

	

Disjunction	

	

Negated-Disjunction	
∼	(p	∨	q)	
∼	p	
∼	q	

	

Conditional

	

Negated-Conditional	
∼	(p	⊃	q)	

p	
∼	q	
	

Biconditional	

	

Negated-Biconditional	

	

	

	 	

∼	p	 ∼	q	

∼	(p	•	q)		

p	 q	

		p	∨q		

∼	p	 q	

p	⊃	q	

	p	
q	

∼	p	
∼	q	

p	≡	q	

	p	
∼	q	

∼	p	
	q	

∼	(p	≡	q)	



	 144	

1.2 ABOUT	THE	TREE	RULES	

The	rationale	for	the	Double	Negation	Rule	is	obvious.	Negation	reverses	truth	value.	Since	
there	are	just	two	truth	values,	reversing	it	twice	gets	you	back	to	where	you	started:	∼	∼	p	is	
equivalent	to	p.	Each	of	the	other	rules	is	either	a	conjunction	or	disjunction:	non-branching	
rules	are	conjuctions;	branching	rules	are	disjunctions.	

Consider,	for	example,	the	Negated-Disjunction	Rule.	It	says	that	∼	(p	v	q)	is	made	true	by	the	
conjunction	of	∼	p	and	∼	q.	And	this	is	exactly	what	we	should	expect:	‘∼	(p	v	q)’	is	DeMorgan	
equivalent	to	‘∼	p	•	∼	q’.	Likewise	for	the	Negated-Conjunction	Rule:	‘∼	(p	•	q)’	is	equivalent	to		
‘∼	p	∨	∼	q’.	We	can	read	the	Conditional	and	Negated-Conditional	Rules	off	of	the	truth	table	for		
‘p	⊃	q’.	Conditional	is	true	if	either	the	antecedent	is	false	or	the	consequent	is	true,	that	is,	if	
we	either	have	‘∼	p’	or	‘q’	or	both:	because	we	have	just	two	truth	values	‘∼	p’	says	‘p	is	false’.	
The	Negated-Conditional	Rule	is	non-branching	because	there	is	just	one	way	to	make	a	
conditional	false:	true	antecedent	and	false	consequent.	Finally,	the	Biconditional	and	Negated-
Biconditional	rules	are	both	disjunctions	of	conjunctions,	representing	the	rows	of	the	truth	
table	for	biconditional	in	which	it	is	true	and	false	respectively.	Biconditional	is	true	if	both	sides	
have	the	same	truth	value—either	both	true	or	both	false,	as	represented	by	the	first	and	fourth	
rows	of	its	truth	table.	Biconditional	is	false	in	the	two	middle	rows,	which	represent	the	sides	as	
having	opposite	truth	value.	

Exercise	3.2	

Write	tree	rules	for	these	two	connectives:	

Sheffer	Stroke	 Down	Arrow	

p	 q	 	p	|	q	

T	 T	 F	

T	 F	 T	

F	 T	 T	

F	 F	 T	
	

p	 q	 	p	↓	q	

T	 T	 F	

T	 F	 F	

F	 T	 F	

F	 F	 T	
	

	

1.3 GROWING	A	TREE	

To	grow	a	tree,	first	list	the	sentence	or	sentences	from	which	the	tree	will	grow.	This	is	the	
trunk	of	the	tree:	the	initial	sentence(s).	Unlike	conventional	trees,	truth	trees	branch	
downwards.	We	apply	tree	rules	to	the	sentence	to	grow	the	tree.	Once	a	rule	has	been	applied	
to	a	sentence	the	sentence	is	checked	(√)	to	indicate	that	we’re	done	with	it.	When	all	sentences	
to	which	tree	rules	can	be	applied—that	is,	all	sentences	other	than	sentence	letters	and	their	
negations—are	checked	the	tree	is	complete.	Each	branch	wants	to	represent	a	truth	value	
assignment—a	row	of	a	truth	table.	But	what	we	want	isn’t	always	what	we	get.	Recall	that	for	



	 145	

each	row	of	a	truth	table,	all	occurrences	of	the	same	sentence	letter	get	the	same	truth	value:	
you	can’t	have	a	truth	value	assignment	where	a	sentence	is	both	true	and	false.	On	a	truth	tree	
we	represent	the	falsity	of	a	sentence	by	its	negation.	If	a	sentence,	p,	appears	on	a	branch,	that	
is,	if	it	occupies	the	entire	branch	at	a	given	point,	then	that	branch	assigns	TRUE	to	p.	If	∼	p,	
appears	on	a	branch,	the	branch	assigns	false	to	p.	If	both	a	sentence	and	its	negation	appear	on	
a	branch,	then	that	branch	hasn’t	succeeded	in	representing	a	truth	value	assignment	so	we	
chop	it	off,	and	put	an	‘X’	under	it,	indicating	that	the	branch	is	closed.	To	see	how	this	works,	
we	shall	consider	truth	tree	tests	for	consistency,	tautologousness	and	validity.	

	

1.4 TRUTH	TREE	TESTS	

1.4.1 Consistency	

Recall	that	a	set	of	sentences	is	consistent	iff	there	is	some	truth	value	assignment	in	which	all	of	
the	sentences	are	true—otherwise	inconsistent.	To	test	set	of	sentences	for	consistency,	
therefore,	we	list	the	sentences	and	grow	a	tree	from	them	in	order	to	determine	whether	there	
is	some	truth	value	assignment	that	makes	all	of	them	true.	The	sentences	from	which	the	tree	
grows	are	the	trunk	of	the	tree—the	initial	sentences.	

Example:	Test	the	following	set	of	sentences	for	consistency:	{A	v	B,	～	(A	≣	B),	～	B}	

Step	1:	 List	the	sentences	to	be	tested.	

	

	 	

	

Step	2:	 Apply	tree	rules	to	the	sentences	until	the	tree	stops	growing.	The	order	in	which	the	
rules	applied	doesn’t	matter,	however,	for	convenience	we	apply	non-branching	rules	first,	so	
that	the	true	doesn’t	get	too	big.	Every	time	we	apply	a	rule	we	check	to	see	whether	there	is	a	
contradiction,	that	is	a	sentence	and	its	negation,	on	the	branch	that	the	rule	grew.	If	there	is	
we	chop	off	the	branch	and	put	an	‘X’	under	it.	

There	are	no	non-branching	rules	that	can	be	applied	to	the	sentences	we	have	so	let’s	apply	
the	disjunction	rule	to	the	first	sentence	and	check	it	off:	

	

	

	

	

A	∨	B	
∼	(A	≡	B)	
∼	B	

√	A	∨	B	
∼	(A	≡	B)	
∼	B	

A	 B	



	 146	

	

Note:	branches	go	all	the	way	from	the	bottom	through	the	trunk	to	the	top.	So	the	branches	
overlap	in	the	trunk:	the	left	branch	includes	the	initial	sentences	and	‘A’	while	the	right	branch	
includes	all	the	initial	sentences	and	‘B’.	

Next,	we	apply	the	Negated-Biconditional	Rule	to	‘∼	(A	≡	B)’	to	complete	the	tree:	

	
Consistent	or	inconsistent?	Consistent	

Now	the	only	unchecked	sentences	are	sentence	letters	or	their	negations,	so	there	are	no	more	
unchecked	sentences	to	which	tree	rules	apply.	The	tree,	therefore,	is	complete.	There	are	four	
branches.	Following	them	from	bottom	to	the	top	we	see	that	there	are	two	branches	that	have	
contradictions	on	them:	‘A’	and	‘∼	A’	on	the	branch	second	to	the	left,	and	‘B’	and	‘∼	B’	on	the	
fourth	branch.	So	we	put	‘X’s	on	the	bottom	of	those	two	branches.	The	other	two	branches	
however	are	open.	That	means	they	each	of	them	represents	a	truth	value	assignment	that	
makes	all	initial	sentences	true:	that	set	of	sentences	is,	therefore,	consistent.	Moreover,	
looking	at	those	branches	we	can	see	what	truth	value	assignment	it	is.	Since	each	branch	
includes	‘A’	and	‘∼	B’	the	truth	value	assignment	that	makes	all	initial	sentences	is	true	is:	A	–	
TRUE	and	B	–	FALSE.		As	you	can	see	from	the	truth	table	we	did	earlier	to	check	this	set	of	
sentences	for	consistency,	that	is	exactly	the	truth	value	assignment	represented	by	the	second	
row	of	the	truth	table.	

Example:	Test	the	following	set	of	sentences	for	consistency:	{∼	(A	∨	B),	∼	A	⊃	(A	•	C)}	



	 147	

	

Consistent	or	inconsistent?	Inconsistent 

	

1.4.2 Tautologousness	

We	can	also	use	truth	trees	to	test	sentences	for	tautologousness.	The	negation	of	any	
tautology	is	self-contradictory:	whatever	makes	a	tautology	true	makes	its	negation	false;	
whatever	makes	its	negation	true	makes	the	tautology	false.	This	gives	us	an	idea	about	how	to	
test	a	sentence	for	tautologousness	using	the	tree	method:	start	with	the	negation	of	the	
sentence	and	grow	the	tree.	If	all	the	branches	close	then	we	know	that	there	is	no	truth	value	
assignment	that	makes	it	true,	that	is,	that	it	is	self-contradictory,	and	hence	that	the	sentence	
itself	is	tautologous.	When	all	the	branches	of	a	tree	close	we	say	that	the	tree	is	closed.	So	this	
is	the	test	for	tautologousness:	grow	a	tree	from	the	negation	of	the	sentence	to	be	tested;	if	
the	completed	tree	is	closed	the	sentence	is	a	tautology.	

Example:		Test	the	following	sentence	for	tautologousness.:	

P	≡	[P	∨	(Q	•	P)]	

To	do	this,	grow	a	tree	from	the	negation	of	the	sentence.	If	the	tree	closes,	this	shows	that	
there	is	no	truth	value	assignment	that	makes	the	sentence	false,	hence	that	it	is	a	tautology.	
This	tree	shows	that	the	sentence	is	a	tautology:	

	

	

	

	

	

	

	



	 148	

	

	

	

	

	

	

	

	

	

	

Note	that	on	the	left-most	branch	we	didn’t	apply	any	rule	to	‘∼	(Q	•	P)’.	We	didn’t	have	to,	
because	once	we	applied	the	Negation-Disjunction	Rule	to	‘∼	{P	≡	[P	∨	(Q	•	R)]}’	we	got	a	
contradiction:	‘P’	and	‘∼	P’	on	the	same	branch.	That	closed	the	branch:	we	didn’t	have	to	go	
any	further.	

Exercise	3.4.2.	Why	are	we	going	about	this	is	such	a	roundabout	way?	Why	don’t	we	just	grow	
a	tree	from	the	sentence	itself?	If	all	the	branches	were	open,	wouldn’t	that	show	that	the	
sentence	was	a	tautology?	Explain	why	this	would	or	wouldn’t	work.	And	if	it	wouldn’t	work,	
give	an	example	of	a	sentence	that	has	a	tree	in	which	all	branches	are	open	but	isn’t	a	
tautology.	

1.4.3 Validity	

An	argument	is	valid	iff	there	is	no	truth	value	assignment	that	makes	all	the	premises	true	and	
the	conclusion	is	false.	Recall	that	when	we	tested	arguments	for	validity	using	indirect	truth	
tables	we	began	by	assigning	TRUE	to	each	of	the	premises	and	FALSE	to	the	conclusion	and	
then	worked	through	the	problem	in	order	to	see	whether	we	could	construct	a	truth	value	
assignment	that	produced	these	truth	values	for	the	premises	and	the	conclusion.	If	we	could,	
the	argument	was	invalid;	if	not,	it	was	valid.	

When	we	test	arguments	using	the	truth	tree	method	we	do	the	same	thing.	We	look	for	a	truth	
value	assignment	that	makes	all	the	premises	true	and	the	conclusion	false.	In	a	truth	tree,	
however,	we	don’t	tag	sentences	with	Ts	or	Fs.	Instead,	a	sentence	is	assigned	TRUE	if	it	appears	
on	a	branch	of	the	tree	and	FALSE	if	its	negation	appears	on	a	branch.	So	to	see	if	there	is	some	
truth	value	assignment	that	makes	all	the	premises	true	and	the	conclusion	false,	we	begin	by	
listing	the	premises	and	the	negation	of	the	conclusion.	These	are	the	initial	sentences	from	
which	we	grow	the	tree,	which	are	part	of	every	branch.	If	the	tree	closes,	the	argument	is	valid;	
if	it	remains	open,	the	argument	is	invalid.	What	we	are	doing	here	is	testing	the	premises	+	
negation	of	conclusion	for	consistency	so	we	grow	the	tree	in	the	usual	way.	If	the	premises	+	



	 149	

negation	of	conclusion	are	consistent	(open	tree)	the	argument	is	invalid;	if	inconsistent	(closed	
tree)	the	argument	is	valid.	

Like	the	method	of	indirect	truth	tables,	this	is	an	indirect	proof	method,	a.k.a.	‘reductio	ad	
absurdum’	or	‘proof	by	contradiction’.	When	we	do	a	reductio	proof	we	begin	by	assuming	that	
the	premises	are	true	and	trying	out	the	additional	assumption	that	the	conclusion	is	false.	If	
this	gets	us	into	trouble	it	shows	that	we	can’t	have	the	premises	true	and	the	conclusion	false,	
which	is	to	say	the	argument	is	valid.	When	doing	an	indirect	truth	table,	trouble	is	when	truth	
values	that	are	forced	produce	a	goof,	e.g.	a	conditional	assigned	TRUE,	with	TRUE	antecedent	
and	FALSE	consequent,	a	FALSE	disjunction	with	TRUE	disjuncts,	etc.	When	we	do	a	reductio	
proof	by	natural	deduction—as	we	shall	do—trouble	is	deriving	a	contradiction,	a	sentence	of	
the	form	‘p	•	∼	p.	And	when	we	use	truth	trees	to	test	arguments,	trouble	is	a	closed	tree—
which	shows	that	there	is	no	truth	value	assignment	that	makes	the	premises	+	negation	of	the	
conclusion	true	together,	hence	that	the	argument	is	valid.	

Example:		Test	the	following	argument	for	validity	using	a	truth	tree:	

G	⊃	E	
H	⊃	∼	E						/	G	⊃	∼	H	

We	put	the	conclusion	after	a	slash	to	the	right	of	the	last	premise.	To	test	for	validity,	we	list	
the	premises	and	the	negation	of	the	conclusion,	and	grow	the	tree	in	the	usual	way:	

	

	

	

	

	

	

	

	

Valid	or	invalid?	Valid 

 

‘∼	(G	⊃	∼	H)’,	the	negation	of	the	conclusion	is	the	last	of	the	initial	sentences.	The	tree	grown	
from	these	initial	sentences	closes,	so	the	argument	is	valid.	



	 150	

Example:		Test	the	following	argument	for	validity	using	a	truth	tree.	

	

Valid	or	invalid?	Invalid 

	

The	tree	is	open	so	the	argument	is	invalid—that	is,	there	is	some	truth	value	assignment	that	
makes	all	the	premises	true	and	the	conclusion	false.	The	open	branch—the	leftmost	one	on	the	
tree—represents	that	truth	value	assignment.	Since	‘A’	in	on	that	branch	‘A’	is	true	in	that	truth	
value	assignment;	since	‘∼	B’	is	on	that	branch,	‘B’	is	false	in	that	truth	value	assignment.	And	
that	is	exactly	what	we	saw	when	we	tested	that	argument	using	an	indirect	truth	table!	

	

A	 ∨	 B	 /	 ∼	 (A	 ≡	 B)	 /	 ∼	 B	 //	 A	 ⊃	 B	

T	 T	 F	 	 T	 T	 F	 F	 	 T	 F	 	 T	 F	 F	

Valid	or	invalid?	Invalid 

	

In	general,	if	a	truth	tree	is	open	there	is	some	(at	least	one)	truth	value	assignment	that	makes	
all	initial	sentences	true.	To	determine	what	it	is,	look	at	the	open	branch(es).	If	a	sentence	
letter	is	on	a	branch,	that	sentence	letter	is	assigned	true;	if	the	negation	of	a	sentence	letter	
appears	on	a	branch,	that	sentence	letter	is	assigned	false.	What	about	the	closed	branches?	
Irrelevant.	They	don’t	represent	legitimate	truth	value	assignments	since	a	branch	closes	
precisely	because	includes	a	sentence	and	its	negation.		


