EEE 194 RF TL Waves & Impedances

Waves and Impedances on Transmission Lines

Trangmisson Line Circuit Modd!

Consder atrangmission line consigting of iterated incremental € ements as shown here:

Vv Y

Y=G+jwC J

Z and Y are the impedance and admittance per unit length ?z
Z=R+jwL and Y =G +jwC, where

R isthe seriesresistance per unit length 2z, Wm

L isthe seriesinductance per unit length ?z, H/m

G isthe shunt conductance per unit length 2z, S/m

C isthe shunt capacitance per unit length 2z, F/m

The equationsfor V and | are

dv d _ : L

4z =Zl and pr =YV, smultaneous solution of which yidds

d2v d?| , T
2 =ZYV and 2 =ZYI; z hererepresents distance along the transmission line.

The solution of these equationsisin the form of wavesin the +z and -z direction, which for
snusoidal excitation take theform

V(2) =V eWH®Z + V_eWtHd2) and |(2) = | e+ | ,eWt+g2)

1 This particular derivation isfrom Terman, Electronic and Radio Engineering, 4th Ed., McGraw-Hill, 1955,
Ch.4
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The propagation constant gisgiven by
g=a +jb =VZY. For wL>>R and wC>>G (low or zero loss case),

b=W\/E

The voltage and current functions represent waves in each direction such that successive pesks
and troughs move at a velocity

W _ _2p
V—B =fl ,sob = |

To diginguish it from the free- pace wavel ength nomenclature | or | ,, the wavelength on a
waveguide or coaxid transmission lineis often referred to as the guide wavelength | .

For asingle wave solution in one direction, theratio V(2)/1(2) is the same everywhere on the
ling, and is defined as the characteristic impedance Z,, which for alosdesslineisared
number

\ Z L _ : :
Zo= == \/; = \/: , Where L and C are the inductance and capacitance per unit length.

|+

Thus we can rewrite the current equation as

- - Vi o V. |
1(2) = | .eWtib2) + | ,eWtHjbz) = == gi(Wt-b2) . == gi(Wt+b2)
Zo Zy

where the minus sign reflects the fact that the magnetic fied, and hence the current, of the
negative-going propagation is reversed compared to that of a postive-going wave. If both
waves exi<, the ingtantaneous voltage or current as function of location is the sum of voltages or
currents of both waves. The characteristic impedance Z, isthe ratio of voltage to current of

ether wave independently, but not necessarily their sum.

Transmisson Line Parameters

If we congder an infinite losdess transmission line, we can determine the inductance L and
capacitance C per unit length from geometric field consderations. The three physicd
embodiments that are of interest are the two-wire transmission line, the coaxid transmisson and
the microgtrip transmission line (asmple pardld-plate gpproximetion).
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Parameter Two-wire Coaxial Microstrip
B M
L In (D/a In(b/a T/W
o In (o) oo N/2) n
pe 2pe
c In(D/a) In(b/a) ewrT

Inthistable, D and a are the center-to-center spacing and wire radius of the two-wireline, b
and aare the outer and inner radius of the coaxid lineand T and W are the dielectric thickness
and conductor width of the microgtrip line. For two-wire ling, the expressons include the
approximation cosrl (D/2a) ~ In(D/a) for D/2a>> 1.

If we solve for Z, of coaxid and microgtrip line, we have

377

Zo= 2p\fer

In(b/a) for coaxid line (note use of In and logyg in different references), and

Zy" 1 T/W for microgrip line, ignoring fringing fieds

Jo

For microstrip, more accurate gpproximations avallable in the literature, and thereisdso a
smple Macintosh program used in EE344 L ab that caculates Z, given g, T and W.

%

D

ﬁ

Parallel Wire Line

N w

Microstrip

Coaxial Line
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Matched Load

If the transmisson is uniform and infinite, the wave in the +z direction will continue indefinitely
and never return in the -z direction.

tz —>

Infinite Transmission Line

If the uniform tranamission line is truncated and connected instead to alumped resistive load R
= Z,, the entire +z wave is disspated in the load, which has the same effect asif an infinite line
of characteristic impedance Z, were attached at the same point. This matched impedance
condition isa unique Stuation in which al the power of the +z wave is ddivered to the load just
asif it were an infinite tranamisson line, with no reflected waves generated in the -z direction.

[
Zg tz —>» E zZ=2Z,

Matched Termination Same as Infinite Line

Boundary conditions at a maiched load are the same as for the infinite transmission line.

Transmisson Line Discontinuities and Load |mpedances

If the wave on atransmission line of characteristic impedance Z,, arrives at aboundary with
different Z,, or at adiscontinuity, lumped load or termination of Z ? Z,, the Sngle wave moving
in the +z direction cannot smultaneoudy satisfy the boundary conditionsrdating V(z) to 1(z) on
both sides of the boundary. On one side of the boundary V (2)/1(z) = V4/l+ = Z5 and on the
other side V(2)/1(2) = (V++V.)/(1+-1)) = Z,.. Asinthe casefor aplane

Mismatched Load Creates Reflected Wave
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wave reflecting from a didectric or conducting boundary, transmitted and reflected waves are
required to satisfy al the boundary conditions?.

Waves can exis traveling independently in either direction on alinear tranamissonline. If a
wavein the -z direction isformed by a complete or partid reflection of the +z wave by some
discontinuity such as alumped load of Z?Z,, the two waves are by definition coherent and an

interference pattern will exig.

Even though the waves are traveling in opposite directions, the interference pattern will be
dationary with respect to the point of reflection, and will thus be a standing wave such as may
be found on the strings of musicd ingrument (of course, these are dso defined by awave
equation). The standing wave interference paitern is present both in the resulting V(2) and 1(2).

Visudization of Standing Waves

Thefollowing st of graphs show the development of the reflected wave, beginning with an
initidly advancing incident wave moving to the reader's right, which is just about to reach the
load point of reflection. For these graphs, Z,=50? and Z, =1007? .
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In the next graph, the incident wave has reached the point of reflection, and the reflected wave
can be seen to be moving back to the reader'sleft. In this picture, the waveforms add to a
greater magnitude.

2 pozar, D., Microwave Engineering, 2nd Ed., J. Wiley, 1998, Ch 2
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The reflected wave advances further to theleft. In this picture, the waves are subtracting.
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Once the reflected wave has reached steady state and moved off the left of the picture, we can
look at the envelope of the combined waveforms. We see that, being coherent, they interfere
and form a sanding wave, with the voltage maximum & the point of the mismatched load
Z,=2007.
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Using the voltmeter function of the software, we can measure the pesk as 3.36 V, and in the

next picture...

Uoltage
=336

Distance
= 0.500 ~

..theminimum as 1.72 V. Hencetheratio of pesk to minimum is 3.36/1.72°2, which is the
SWR, the ganding waveratio. Thisisred number, and does not vary with location on the line.
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The Complex Reflection Coefficient G

We can express the totdl voltage and current resulting from waves traveling in both directions:

V(2) = VielWt-b2)1y/ gi(Wi+bz) and
AV V.o

1(2) = — elWt-bz) . — gj(Wt+b2z),

@ Zs Z

A mismatched load may be either alumped impedance or an infinite transmisson line of a
different Z,. 1f we consder acomplex load impedance Z; terminating atransmisson line Z,,
the magnitude of the -z wave is related to that of the +z wave at the termination by a complex
quantity defined as the reflection coefficient G, defined such that

V_=G_ V4, where

V. -l . .
GL=g =7 =G |led=r ed=r[g
Vi 4

The reationship between the incident wave, the reflected wave and the transmitted wave arising
from such a discontinuity such as alumped load is expressed in terms of the reflection
coefficient, so that the reflected wave voltage phasor at the point of reflection is

V.= GLV+ and

V| =V4+V_ =V (1+G ). Thisisshown in vector form here below I€ft.
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If wenormdizetov, =1, thenv. = G_and v = 1+ G_. Thisisshown below right.

V.= (1+Q V-
( G V-=G\/+ 1+G G

» a

V. 1 >

Now consider what happens if we move a distance -z dong the transmisson line (in the -z
direction, away from the load and toward the generator). At this point we have
V(d) = 1+G(2) = 1+G_ e12bz = 1+|G| ei(a-2b2), shown in vector form below Ieft.

1+G

2 bz

If we ingpect what happensto V(z) as we vary z, we can see from the figure below right that
V(2) varies from amaximum of 1+G_| to aminimum of 1-|G |, and that the distance between
minimaor between maximaiis 20z = 2p, which occurs every 1/2. Also, the distance from a
minimum to amaximum is| /4.

This particular form of polar presentation has the advantage of containing al possible vauesof G
within the crcle |d = 1, and the vector Gis defined everywhere on alosdess transmisson line
by the same vector length |3 or r , with the distance to the load in wavelengths identified with
the angle of the vector G.

Standing Wave Ratio (SWR) and Return Loss

We can identify the maximum and minimum voltages Vinax and Vimin (normaized to V) by
ingpection of the figure above.

The ratio of these magnitudesis ared number, the voltage standing wave ratio (SWR, or
VSWR), given by
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Vmax _ 1HGL| _ 1+r

SWR = = = . Note that this can be solved for r , yiddi
Vmin  1-|G| 1-r yiedng
SWR-1 )
r = SWR+L’ 0 if we know SWR weknow r .

For amatched load r =0, SWR =1 and the voltage on thelineisjust V(d) = V. for dl d; under
such acondition thelineistermed flat.. Theratio of the power in the reflected wave to that in
the incident wave, termed thereturn loss, is

P._IVP
Pr ~ V4P

=r2

or, expressed as aloss (a postive number) in dB
RL =-10logigr2=-20logigr .

By measuring the return loss in dB, we can determine
—_ 10RL/20 s S - -
r =10 and SWR = 17 which characterizes the degree of impedance match.

In alosdess network, the transmitted power is
P; = Py - P.= P4(1-r 2), and thetransmission loss TL is
TL =-101log;g (1-r 2) dB.

At the points of voltage minima and maxima, the impedance is a pure resistance, which makes it
possibleto evauate Z at those points in terms of the standing wave ratio SWR.

At avaltage minimum (which isaso a current maximum), Z =R = Z, and

__%o -
Z= SWR ared quantity.

At avoltage maximum (acurrent minimum), Z =R = Z, and

Z =Z,Xx SWR, ds0 ared quantity.

-10 -
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The Smith Chart3

For atransmission line of characteristic impedance Z, and load impedance Z;_ thereflection
coeffident G_is

i 1
A7y Zy T : .
GL 247y Z ; normalize Z to Z, by defining z_ such that
L 4
Zo
Z .
zZ = Z Subdtituting, we have
7-1 :
G = ﬁ , and at any distance d from the load we have
: d)-1
G(d) = GLe-Zjbd = % ,

where z = r+jX, the impedance, resistance and reactance normalized to Z,.

Solving for z, we have the value of z for any measured G a any point d

z(d) =%§} . Thiscan be expressed in the very useful form

Zin= ZOZO +jZ, tanbd” the input impedance of aline of length d, Z, and load Z, .
If we plot G on the polar plot, and overlay the circles of constant r and X, thisyiddsthe Smith

Chart, on which we can convert from Gto Z (or the reverse) by inspection.

To see how the Smith Chart works, first consider amatched load, Z =Z, and G=0. This
point isa the origin of the plot, Snce G=0+0. Thisis plotted below |eft.

Next, congder atransmission line terminated with an open circuit at d=0.

3 Smith, P. H., "Transmission line calculator”, Electronics, vol. 12, pg. 29, Jan. 1939 and "An improved
transmission-line calculator", Electronics, vol. 17, pg. 130, Jan. 1944; for an interesting biography of
P. H. Smith see also http://www.noblepub.com/Noble/Smthbiog.html

-11 -
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z, Z(d) —»I Z(0) —>I
d d=0

At d=0, the plane of the open, the current is constrained to be zero, so the reflected wave
current must equal the incident wave current and be out of phase (i.e, I. = - 14, so that

V_= V). Theimpedance Z(0) at this point is 8, and the reflection coefficient Gis

-1 . . .
G = zZTl = 1/0. Thisvadueof Gisplotted on the polar chart below right.

-
(1T
= o

Ny

Matched load (G=0) Open circuit load (G=+1)

Now condder atransmisson line terminated with a short.

z, Z(d) —>I Z(0) —>I
d d=0

At d=0, the plane of the short, the voltage is zero, so the reflected wave voltage must equa the
incident wave voltage and be out of phase (i.e, V. = - V4). Thisisthesameas

G=-1/0whichisG= 1/p. Thisvdueof Gisplotted on the polar chart below |eft.

14G(0) _ 1+(-1)
1-G(0) ~ 1-(-1)

z(0) = = 0 a thispoint.

-12 -
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Now consider what happens as we move back aong the transmission line away from the short
circuit load toward the generator. In the shorted case, Grotatesfrom G = 1/p toward

G=1/0, while|@=1. A very short tranamisson line terminated with a short is inductive and
has positive reactance Z = jwl, and in fact the entire upper hemisphere of the G plot isinductive
(poditive reactance). If we consgder thecaseof Z =X =jZg, 0rz=j, Gis

H

Z-
Z+

IS
=11 =i=1p2

G=

|
=

Since the phase angle of Gis-2bd, this point corresponds to moving bd = p/4, or d/I = 1/8.
When we have moved d = | /4, the phase angle of Greaches 0. Thisis plotted below right.
Because the polar plot will become crowded with information, the vertica (j) axis of the
preceding polar plots will not be repested from this point of the derivation.

Moving away from
toward generator

Short circuit load (G=-1) Short through arbitrary linelength

By the same reasoning, if we move back on the open-terminated transmission line away from
the open toward the generator, Grotatesfrom G= 1/0 toward G= 1/-p, while|d=1. A very
short transmission line terminated with a open is capacitive and has negative reactance Z =
VjwC, and in fact this entire hemisphere of the G plot is capacitive (negative reactance). When
we have moved | /8, the phase angle of Greaches-p/2, and z = -j. When we have moved | /4,
the phase angle of Greaches-p, and z=0. Thisisplotted below left.

But the fact isthat any arbitrary impedance z or reflection coefficient G will have the same
behavior if we move dong the transmisson from the point it is measured toward the generetor.
And if the impedance is measured at a point on the transmission line other than @ the
termination, we can move toward the load aswell. It isthisvariaion only of the phase angle,
and not the magnitude, of Gthat is plotted below right.

-13 -
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Toward
load

Moving away from o
towa}rd generator

Toward
generator

Open through arbitrary line length Only the angle of G changes

Because 2bd, the phase angle of G, istwice the dectrica length bd of the motion aong the line,
Gand its corresponding impedance z repeet every 1/2. It isthe fact that G and z contain exactly
the same information, but that only G varies gracefully as we move dong atranamisson line, that
makes the polar plot of G, the Smith Chart, so useful.

Now if we overlay circles of constant r and constant x, we can enter either g or z, can convert
between them by ingpection, and can account for changesin line length by angleonly. Thisis
the Smith Chart, plotted below |eft.

We can dso add, for example, the circle for SWR = 2, for which |d = 1/3, as shown on the
right. No matter what |oad impedance resultsin this SWR, as we move dong the line at some
point we pass through r = 0.5 and r = 2, repesting both every 1/2. Recaling the earlier figure
showing Vmax and Vpin, this congtruction demondtrates that at the voltage maxima and minima
the impedance isred and is either z= SWR or z =1/SWR.

-14 -
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x=1 x=1
/—r\ /—r\
X= X=
N, N,
™ ™
-, SWR=2 .
-\._\_\_L -\""\-\. ‘
"'“-q___h ] { 1“‘-\.__ i
_.._'__':_-_= ..... 3 ‘ _.._'__':_-_= .....
A % =
- ‘ -
IF- ‘ .ﬂ',-.- ’-‘
~<lw
X= X=

The Smith Chart has a least four benefits:
1. All possblevauesof G, hence dl possble vaues of Z, lie within the unit circle.

2. For agiven termination, the variation of G with trangmission line pogtionissmply a
rotation on the chart with no change in magnitude |G, and hence, no change in SWR.

3. Linesof congant R and X are uniquely defined circles on the chart, so we can input data
in Gformat and read the result in Z format by ingpection.

4. Daafrom adotted line can be entered directly in terms of SWR and distance between
minima.

The Smith Chart isamapping onto the complex G plane from the complex z plane. We let
G=u+tjvandz=r +jX

Gou+ive z1  rHx-1  (rrD)Hx o r2-lH2x o r2-l L X
SUTIVEZa T FHXHL " (FHD)HX ~ (r+10)24+x2 ~ (r+1)24x2 (r+1)2+x2

Circles of congtant G are concentric with the center point of the chart, which represent
z=1+]0, hence G=0+]0. Linesof congant r and variable x transform into circles passng
through the point labeled r on the axis running fromr =0tor = 8. Lines of constant x and
variabler trandform into circles passng through specific points on the outer circle |@ = 1. The
Smith Chart expresses the polar form of Gdirectly by inspection, the polar angle being the angle
from the res stance axis.

-15 -
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The benefit of the Smith Chart in connection with the use of computers for transmisson-line
cdculaions liesin its ability to ass3gt in visudizing transmisson-line problems, even though the
accuracy available from computation is much greater. The Smith Chart is used so widdly it
could be congdered the logo of microwave engineering. It isfound on the cover of dmost
every book on the subject.

Transmission Lines as Reactance and Resonators

On the Smith Chart, if we rotate around afull circle toward the generator (away from the |oad)
to return to the same impedance, we have gonel/2 on the transmisson line. Notice that if we
choose ared impedance of Z?21, by rotating one haf circle (1 /4) we transform zto 1/z. This
property of al /4 transmission line can be used to match an impedance Z to atransmission line
Z, by interposing between the line and the load an impedance matching 1/4 line whose

characterigtic impedance Z, = Zo4/Z. Thisis known as a quarter-wave transformer. Any odd-

multiple of 1 /4 can be used & a single frequency, but the frequency senstivity of the resulting
match will be greeter.

For thel /4 case
2

_ _Lo°
z.n—JJzLorZ—ZL

For the case of 1/2 we see that the impedance is the same as the load impedance. This repeats
every hdf wavdength dong theline.

For the case of shorted load (Z, = 0),

Z =jZytan(2pd/). For the case of ashort line (d/l <<1), this can be expressed as
Z" jZo(2pdh), which isan inductive reactance.

Sincefi =v, the velocity of propagation, we can say

Z" jZo2pfdiv.

Since Z = jX = 2pfL. we can write the inductance L of a short shorted line:

d
L~£

\Y

For ashorted line of length d = 1/4 or odd muiltiples thereof, the impedance will be high and will
vary with frequency in exactly the same manner as alumped parale resonant circuit. For
lengths that are multiples of 1/2, the impedance will be low and will vary in exactly manner asa
lumped series resonant circuit.

-16 -
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For opent-circuited load (Z, = 8) we have

120

Z = tan2pdl ) -

For the case of ashort line (d/l <<1), this can be expressed as

120

~ (2pdh)

Z , Which is an inductive reactance. Asabove, we can express

~ vV
C Zd
For an open line of length d =1 /4 or odd multiples thereof, the impedance will be low and will
vary with frequency in exactly the same manner as alumped series resonant circuit. For lengths
that are multiples of 1/2, the impedance will be high and will vary in exactly manner as alumped
pardld resonant circuit. The Q of such aresonator is determined by the line losses.

In the more genera case, the Smith Chart is quite useful to determine impedance matching
networks using various configurations of transmission lines and lumped dements. Itisaso
possible to use multiple quarter-wave sections to provide broader band matching. These will be
covered in detall in the future.

Here's an interesting extra problem: Using the Smith Chart, find the linelength for x =1 (X =
Zo)

The SWR of aline can be measured by use of a dotted transmission line, arranged to probe the
voltage asafunction of pogtion. This method isingructive, but has been replaced by modern
ingruments that generally measure impedance directly and display the result on a Smith Chart
display. Direct measurement of impedance can be very precise, but the accuracy is determined
by the accuracy with which the line length is determined from the measuring device to the point
of measuremen.

Also, because the currents of the incident and reflected waves are of opposite Signs, it is
common to make a directiona coupler that adds the voltage through a smdl capacitance
(nondirectiond) to the voltage developed on asmal magnetic coupling loop (directiond) to form
adirectiona detector that can measure the incident and reflected wave amplitudes separately,
permitting the direct measurement of SWR.

Modern coaxid transmisson lines range from miniature semirigid cables of 0.085" diameter up
to cablesthat are aslarge as severa inchesin diameter. Connectors with low reflection are an
important element of the gpplication of transmission lines, and time-domain reflectometry is used
to locate and remove discontinuities that can cause reflections at certain frequencies. Active
devices are composed of semiconductor € ements in connection with directional couplers,
power splitters and other peciaized microwave components such asfilters.

-17 -
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Present microwave circuit practice is primarily based on microstrip, which is aplanar conductor
sugpended on a dielectric above a conducting plate. Because this configuration can be built with
photolithographic techniques, it has been widely studied and applied. The fields are not
confined to the dielectric, and thus there are two dielectric regimes, with the result that
microgtrip is dispersive and is more complex than coaxia structures to andyze and synthesize,
but dl the congderations of waves on transmisson lines apply.

Transmisson Line Losses from Resstance

It isof interest to caculate the losses due to surface resistivity, in order to calculate the lossesin
atrangmisson line composed of good, but not perfect, conductors.

Condder abar of conducting meterid shown in Fig. 1, extending indefinitely in the z direction
(into the materid). An AC sourceV is connected at z = 0 to the two conducting planesat x =0
and x =1. Sincethiswill giveriseto only E,, we can assume that the fields are uniform in the x-y
plane, and waves will move in the +z direction, the depth into the conductor.

_>><

This figure, and the derivation that follows, are based on Rizz“.

The E-fidld a z = 0 will be determined by

\Y . .
Eot = T and E*(2) will move toward +z in the form

4 Rizz, P., Microwave Engineering, Prentice Hall, 1988, pg. 44ff: see also Pozar, Microwave Engineering,
and Moreno, Microwave Transmission Design Data, Ch 4

-18 -
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E* = Egt e %, where

g=a +jb=\/pfms +j\/pfrs
We have defined the skin-depth dg to be

1

de =
> \/pfrs

To get to the loss resstance, we need to caculate the current Iy in the direction of the voltage V,
whichis

8

g b
ly = g 8J, dydz. Weknow that

Oy:O

z=0

Jx(2) =sEx=sEgte®

Integrating with respect to y smply results in the dimenson b, so we are left to integrate with
respect to z to get

_ sbEs"
9

Ix
To determine Z, we take the ratio of voltage to current

Z :M toyidd

Ix

Z :ﬁ(l +]) . Wereonly interested in the red part, so we have
S

Rs ohms. Notethe phase angle of Z is45°.

|
" shdg

If we consider the case of around conductor of radius a, we have the width b = 2pa, so the
seriesresiganceis

-19 -
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Rs = S (202de (2pa)ds ohms.

Recdl that the skin depth is

1

\/pfrs '

For copper, p=1,so m=4px 107 and s = 5.8 x 10-7 §m and the skin depth reduces to

ds =

d _66x10% meters
A
f

At f = 109 Hz, skin depth is 2.1 x 10-3 mm, or about 80 millionths of an inch, so you can see
that only the surface of the conductor has much effect. Often copper or silver are plated onto a
lower-conductivity materid for microwave use. If inadequate plating is used, the losses of the
underlying materiad can have a dradtic effect on transmissiontline losses.

Surface roughness aso affects losses, since it increases the effective surface resstive path. An
gpproximation for Ry in the case of surface roughnessis

Rs' = Rg[1+ 2/p tan'l 1.4(?/ds)2], where ?is the rms surface roughness.

Losesin Coaxia Cables

For coaxid cable, there are two cylinders that must be considered. The outer is often specified
to have radius b (not to be confused with the dummy width variable above), while theinner has
radiusa For such acable, the loss resistance is the sum of the resistances of both the inner and
outer conductors. Physicd cables are often specified in terms of diameter (a measurable) rather
than radius, and dimengions are often stated in inches.

The magnitude of awave on alow loss transmission line can be expressed as
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V(d) = V,ead
If we compare V(d) to V(0), we see that

M —ea

q .
V(0) , and the power ratio is

ﬂgl = e-2ad
P0)

To expressthisin decibe form, thelinelossin dB is the pogtive number
10
Loss = 10log(e2ad) = >3 In(e2ad) = 4,343(-2a d) = 8.686a d dB per length d

For the lumped- congtant equivalent circuits, the parameters for acoaxid transmisson line are as
follows

Zo= ecr\/ea—r |n(§ )

2pecer we" +syg
G=w— — tand,wheeheetand =———

In(g) we

1 1 1 1 1
R_2padss * 2pbdss  2pdss (a+b)

Loss per unit length conssts of two components?, conductive and diglectric losses

S + 120p2eq(er)3/2 f. But since

1
ds = ——=—— wecan seethat a will beof theform a = k\[f + kof

i\ PHrHoS

For 1/4" samirigid cable, Z,=507 , b=7x10-3m., e,=2.1 and tand = 0.00015 (Teflore),

5> Rizz, P, Microwave Engineering, Prentice Hall, 1988, pg. 185
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a = 2.5x106[f + 2.0x1011 f dB/meter

For RG214 cable, Z,=507? , b=1x102 m., &,=2.3 and tand = 0.00031 (polyethylene),

a = 1.5x106[f +4.2x10-11 f dB/meter

Some more modern RG-8 type cables use afoam dielectric, which has alower didectric
constant and | oss tangent than polyethylene. Also, the larger center conductor diameter
required to maintain Z, = 50? with foam didectric resultsin lower resigtive loss.

In order to see the two components of loss, we plot a (f) vs. f onalog-log plot, whichisthe
equivalent of plottinglog a vs log f.

Pease note the discussion of Nepers and decibelsin Pozar’. Most exponentid or natural
logarithmic ratios result naturaly in answers in Nepers, which can be converted to the more
commonly-used decibels by the conversion factor 1 Np = 8.686 dB. Of course, keep in mind
that power ratios are the square of voltage ratios, which givesrise to the use of

dB =20 log (V1/V>2) for voltage ratios and dB = 10 log (P1/P5) for power ratios.

Coaxid Line Impedance for Minimum Attenuation and Maximum Power Capacity

The expression for conductive loss a ¢ in acoaxid line, assuming equd resdivity of inner and
outer conductors, is of the form

(1+x)

Inx

ac=kg , Where x=b/a, the ratio of outer to inner radius.

If we plot this expresson, normdized againg its minimum value, as afunction of b/a, we can see
there is abroad minimum around x=3.6, which correspondsto Z,=77 ? for air line and Z,=51
? for polyethylene didectric (e,=2.3).

. . In :
The expression for breskdown voltage is of theform Vmax = vaX , but since Prax=V max/Zo,

we need to consider instead the maximum power capacity, of the form

6 Reference Data for Radio Engineers, Fifth Edition, Howard W. Sams, 1968, pg. 4-28
7 Pozar, D. M., Microwave Engineering, 2nd Ed., J. Wiley, 1998, pg. 72-73
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0.00

b/a

Inx
px2 '

k

Prmax=

If we plot this expression, normdized againg its maximum vaue, as afunction of b/a, we can

=197

28 ? for arlineand Z,

see there is amaximum around x=1.6, which correspondsto Z,

for polyethylene didectric (e,=2.3).
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These curves appear in Moreno?8, and interestingly, are calculated incorrectly in Rizzi®.

Appendix |: Reference Summary of Rdationships Between Complex Z and G

+

Theinput waveisV+ and | *, and the characteristic impedance Z,, is defined as Z, = T

V-=GV*tand|-=-GI*. Thetotd voltageV is
V =V*t+V-=Vt+ GVt =V*H1+G), and thetotd current | is

I =1*t+-=1*-Gl*=1%1-G). Therato of V/I istheimpedance Z, which is

_V _V¥(1+G) Lo VP
Z—I = +(10) . Subdtituting m =2y, SO
\% 1+G - . Z
Z—I —Zol_G . Deflnlngnormailzedz—Zo
Z ;= ¥C Sitwek know Gand vi
Zs =z= 7 »Soifweknow z, weknow Gand vice versa

Toga zfrom G if weddineG=G +|G=a+jb

8 Moreno, T., Microwave Transmission Design Data, Dover, 1958, pg. 64
9 Rizz, P., Microwave Engineering Passive Circuits, Prentice Hall, 1988, pg. 189-190
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_Itatjb _ [(I+a)+b][(1-a)+jb] _ (1+a)(1-a)-b>+[b(1-a)+b(1+a)]
*T Lajb " [(-a)jblla-a)b] " (1-a)%+b2

_ 1-a2-b2 +j2b
2= (1-a)2+h2

1@ 1G2G?
= (-a)2+b2 T (1-G)2+G2

2 26
T (a4 T (1-Gr)2+G2

X

To get Gif weknow z, solving for G,

1+
1-

@

Z=

®

(1-G)z= 1+G
z-2G=1+G

z-1=2G+ G=(z+1)G, s0

-1
G= ﬁ . Themagnitude |d = r of the reflection coefficient Gis determined by

oo @EDNZ-Y) _ (-1X)(-1x) (r-1)2+x2
GG =M= D)z +1) ~ (ML) +14%) — (r+1)2+x2

(r-1)2+x2 .
IGl=r = (r+1)—2+x2 . We can determine SWR from r by

1+r

S\NR:F . If weknow r we know SWR and vice versa. Solving forr,

_ SWR-1
T SWR+L °

r

Ifx=0,r ::_Tll andforrzl,S\NR:r;forrzl,S\NR:% .

Congder atranamisson line with arbitrary mismatched complex load establishing agiven SWR.
At the points of minimum and maximum voltage (and hence, minimum and maximum impedance)
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on the transmission line, the impedanceisred and isrelaed to the SWR by thesmple
relationships

Fmax = SWR, or Rmjax = SWR X Z,,.

Zo
SWR -

1
Imin = SWR or Rmin =

The numerica fraction of power reflected at an arbitrary impedance defined by r is
RL = r 2 and the numerical fraction of power transmitted is

TL=t2=(1-r2).

For examplee SWR=2,r2=0.11(-12.3dB) and t2=0.89 (-0.26 dB).
Defining z =r + jx, we can determine G from z by

z1 r-1Hx  (FIHX)( LX) (D) +H)HXZ H)(r+r+1)
z+1 T r+lHx T (r+1HX)(r+14x) (r+1)2+x2

G=

_r2-14+x24x(2)
T (r+1)2+x2

Thered patof G=G + ]G is

o rZ4x21 dtheima of Gi
G = (2 theimaginary part of Gis

j2X

G = 2

. These relationships can be used to create a Smith chart plot of G.
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