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We have calculated the effective mass of the spring in an oscillating mass-spring system.
It varies from 4/72 to § the mass of the spring as the suspended mass varies from 0 to . This
and the various predicted modes can be easily verified experimentally.

A mass M attached to a spring having a force
constant K is a system well-known to every stu-
dent of physics. It epitomizes simple harmonic
motion. The spring is usually assumed to be mass-
less. When the motion is studied in more detail,
the student is led to believe that % of the mass m
of the spring, the effective mass, should be added
to M when calculating the frequency. Derivations
of the effective mass are given in some textbooks,!
but the result is not always 0.33m. Sometimes it
is 0.50m.2 As a matter of experimental fact, the
result is neither of these values but something in
between. For a system with M =0, as in the case
of an oscillating “slinky”’ with no mass attached,
the effective mass is 0.40m.? These discrepancies
suggest a more detailed examination of this
familiar old system: it has perhaps been treated
in too cavalier a fashion. We give below an analysis
of the longitudinal oscillations of a mass M at-
tached to a spring having mass m and force
constant K. We first solve the problem for the
gravity-free case, and then we include the effect
of gravity on a vertical mass—spring system.

Note Added in Proof: After this manuscript was
submitted, two other discussions of this problem
have appeared: H. L. Armstrong, Amer. J. Phys.
37, 447 (1969); F. W. Sears, Amer. J. Phys. 37,
645 (1969).

I. GRAVITY OFF

If the coordinates of the fixed and free ends of
the spring are =0 and x =2, respectively, then
the linear density is ¢=m/z, and the force con-
stant of a unit length is Kz, The equation of
motion for U(z, ¢), the displacement from
equilibrium of a point at = is

#U(z,1) (L) #U (1) _

0. 1
dx? Kz, a2 ‘ 1

Separation of variables with the usual sinusoidal
time variation of U at frequency w gives, for the
amplitude «(z), the equation

(Pu/dz?) + (wis/Kxe)u=0., (2)

One of the boundary conditions is % (z) |,—o=0.
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Henee the solution of Eq. (2) is
u(z) =A sinfwr(oc/Kzo) V%] (3)
The other condition is
T(wo) =Kao(8U/0%) |gmag=—M (*U/08) |smss,

where T is the tension. Substitution of the deriva-
tives of U(x, t) =4 sinwt sin[wz(o/Kx) V2] yields
immediately

utanp=m/M (4)

where pu=w(m/K)¥2. We postpone discussion of
the solutions of this equation until the latter part
of Sec. I1.

II. GRAVITY ON

When the same mass—spring system is vertically
supported, an element dz of the unstretched spring
with its force constant Kzo/dz is stretehed to dz’
in the static case under the influence of gravity,
and by an amount dU in the dynamic case, so that

T(z) =Kzo(dU/dx+da' /dx—1). (5)

At this point we can proceed to set up the differen-
tial equation and solve it using as independent
variables either z and ¢ or 2’ and ¢. Physically, we
expect that in both cases the same frequency
spectrum will be obtained. In terms of z, the linear
density of the spring is constant and the problem
is eagier to solve. In terms of #/, the nonuniform
density makes the solution more complicated, but
the amplitude %(z’') is more directly related to
observation. Here the problem is done in terms of
x, and the solution in terms of ' appears in the
Appendix sketch.

From Eq. (5) the net force on the segment dz
is given by d7T =K (82U /9x2+d2’ /dx?)dx. The
equation of motion is obtained by setting this
equal to [[(odz) (32U/08) —eydx ], i.e.,

02U /ox*+-d%’ fda? = (o /Kzy) (82U /082) — og/ Kz,
(6)

To obtain the relationship between z and 2/, we
use the condition of static equilibrium of the
length of the spring between z and

(Kuxo/dz) (da/ —dz) = og(m—x) +Mg.
Hengs,
do’ /dx = (Mg-+mg-+ Kaxo—ogz) /K,

(7)

and
d%’ fdat= —og/ Ky (8)

Substitution of Eq. (8) in Eq. (6) results in the
former equation of motion (1). The first boundary
condition, u{z) [,—=0, is the same as before.
The second is obtained by using Eq. (5) to
get the tension at =2, and equating it fo
[(Mg—M(32U/o2)7]. With the help of Eq. (7),
the second boundary condition then becomes

K6(8U/9%) |smag=— M (32U /3) |smsn,

which is the same as before. Since the equation of
motion and the boundary eonditions are the same
as those leading to the solution given in Eq. (4),
the latter is also the solution for this case, and the
frequencies and the amplitudes expressed as
functions of the coordinate x are identical in the
presence and absence of gravity. The same is true
for the effective mass.

When M>>m the first root of Eq. (4) is given by

putp?/3+-)=m/M,  o=[K/(M+m/3)]"
and the other roots are given by
u=2zn, wmn (K /m)12, n=1,23, ««-.

At the other extreme, when M =0, we obtain
(cotu)/n=0, or p= (2n+1)7/2,
w=(2n+1) [K/(4m/=*) ],
n=0,1,2 -

Thus in the fundamental mode, as M/m— =,
the effective mass of the spring approaches m/3,
while for M =0 it is 4m/72=0.405m. In the higher
modes the concept loses its usefulness. For inter-
mediate values of m/M the tabulated solutions of
Eq. (4)* can be used to calculate and plot the
effective mass for the fundamental mode or the
computer can be used as was done for Fig. 1.
The first several modes of oscillation given by
the roots of Eq. (4) can be readily demonstrated.
We have excited the modes in a spring hung
vertically from a support that was driven by an
electromagnet connected to the amplified output
of an audio-oscillator. When M =0, modes of
oscillation with 0, 1, 2, 3, - - nodes were readily
observed for which the frequencies were in
the ratios 1, 3, 5, 9, «+-. When M is equal to
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Fic. 1. The effective mass, m,, of a spring having a mass,
m, with an added mass, M.

several times m, the first, second, third, ete.
harmonics consisted of vibrations with nodes
approximately at the ends of the spring and with
0, 1, 2, --- additional nodes in between, and
frequencies in the approximate ratios 1, 2, 3, «=-.
As mentioned in the opening paragraph, it is not
difficult o discover in the elementary physies
laboratory that, for M =0, the effective mass of
the spring is 0.40 times its actual mass. The whole
problem makes an interesting exercise for the
undergraduate laboratory and/or classroom me-
chanics course demonstrating somewhat un-
anticipated aspects of a simple, familiar system.

APPENDIX

The solution in terms of #’, mentioned in con-
nection with Eq. (5), is obtained as follows.
From Eq. (5) dT/dx’ is expressed in terms of
derivatives of U and & with respect to «’. 2 is then

G. FOX AND 1J.

MAHANTY

eliminated by means of Eq. (8) and its integral
to yield the equation

du  (1/22)du
dz? + dz

where z=[(Mg+mg+Kx)2/2mgK]—z" and
P=w?/29. The solutions of this equation are
AzY%5(2922) and Bzl2y,(20212), where j; and 7
are the spherical Bessel and Neumann functions.
The two boundary conditions and the requirement
of a nontrivial solution for the arbitrary constants
A and B Jead to Eq. (4).

A simple but pedagogically useful example
of the use of the é function is provided by treating
M not as a boundary condition but as an integral
part of the system, i.e., as a term M&(z—x,)
to be added to the density ¢ in the equation of
motion [Eq. (2)]. Then the functions ®.(z) =
(2/2g) 2 sinl (2n+1) 72 /22, complete and ortho-
normal for 0 <z <z, can be used in the equation
of motion to expand u(z) and, through the closure
relation, 6(z). The expansion coefficients can
then be evaluated, x set equal to x, in u(z), and
the partial fraction expansion of the cotangent®
used to obtain Eq. (4) again.

nu

+ = =0,
K4
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