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Abstract
Model fitting to experimental results is presented within the context of graduate
physics laboratories and generalized to other graduate and post-graduate levels,
and diverse research fields. In most cases the analysis of experimental results,
in terms of mathematical models available to describe the obtained results,
extends beyond the numerical minimization of statistical estimators, like the
chi-square, in the model’s parameter space. Dedicated fitting procedures, not
easily or directly available in common data analysis software’s packages, are
required to obtain the best fitting set of parameters that present a consistent
physical meaning. A simple but powerful web-based solution is presented, and
its relative advantage in comparison with known commercial and open source
solutions is discussed.
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1. Introduction

The model fitting of experimental results is a teaching subject considered in physical
sciences and engineering graduate courses. The most basic and common example concerns
the case of the fit of a straight line to a data set where the dependent observable depends
linearly on an independent variable. This case is often presented together with the statistical
concept of one-dimensional linear regression and further extended to multiple dimensions
[1]. The numerical procedure most often used to estimate the slope and intercept in a
linear fit is the least-squares minimization [1]. This simple model fit can be made using
a large variety of software packages, some of them well known to both teachers and
students. In a recent work Peterlin [2] presented a comparison between spreadsheet versus
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statistics suite solutions for data analysis and graphing in physics laboratories. Simple
linear regressions and polynomial regressions can be performed using both spreadsheet
and dedicated software packages. However, in the case of more complex nonlinear and/or
multidimensional model fits, the spreadsheet approach often becomes impractical and
other more dedicated statistical suites (either commercial or open source) have to be
considered [2].

In introductory physics laboratories, it is often required to analyse experimental results
with physical models that have nonlinear dependences on the physical parameters. An electrical
oscillatory circuit might be one such case [3]. A serial circuit with an ac power supply, a resistor,
R, a capacitor, C, and a coil, L, might operate in different regimes, depending on the type
of voltage being applied to the circuit and the values of R, C and L. Another example is
the classical mechanical system formed by a mass suspended on a spring. Within the elastic
limit the length of the spring depends linearly on the value of the mass in a static experiment
or presents a motion with a damped amplitude (oscillatory or not) after an initial spring’s
elongation/compression. When subjected to an external oscillatory force, the spring–mass
system might present a resonance when the frequency of the external force matches the
resonance frequency of the system that depends on the elastic constant of the spring, the value
of the suspended mass and the friction’s coefficient, respectively.

In advanced physics laboratories students and researchers need to analyse experimental
results obtained with different experimental techniques such as: x-ray diffraction, nuclear
magnetic resonance (NMR) and polarizing optical microscopy, to name a few. These
experimental results are in most cases analysed in terms of nonlinear physical models. In
professional research work, experimental results obtained for a studied system often include
different observables and depend on one or more experimental variables. In those cases, the
best results are obtained when the data analysis is performed with a global best-fitting target.
This goal adds a degree of complexity to the model-fitting procedures that cannot be easily
addressed using spreadsheet software and in some cases requires considerable expertise in the
use of some of the dedicated statistical suites available, like those referred to by Peterlin [2]. The
approach to obtain the best global model fit to a set of experimental results, where different
observables and independent variables have to be considered, requires a set of skills that
extends the basic technical competence in numerical analysis and least-squares minimization.

Another important issue concerning data analysis in physics laboratories is the possibility
of collaborating with other students in the same problem (team work). The possibility of
sharing data space, models, plots and solutions, in addition to the possibility of continuing the
work away from the laboratories, can also be an important point when choosing the computer
solution to use for the data analysis. In advanced research work, the collaboration might
include researchers across the world. The existence of web services as repositories of files that
can be shared among different users help to overcome part of this problem. However, the use
of commercial software might in some cases be a serious limitation to off-campus work and
in some cases prevents the sharing of software solutions due to license limitations that might
restrict the use of conventional software packages.

In this work, a web-based solution is presented (available at http://fitteia.org) for
professional model fitting, graphing, data analysis and report writing that can also be used for
teaching at both graduate and post-graduate levels1. This solution spares users the overhead
technical work associated with the least-squares minimization, data plotting and report writing,
necessary when using conventional software packages, thus allowing users to focus on the

1 Users can register, or reset their login password, using a valid email address. The system assigns a password that
users can change afterwards. The user can be assigned one of two privilege levels: normal and privileged. The user
has three running modes available: basic, advanced and expert (http://fitteia.org).
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‘art’ of model fitting and parameter’s estimation. The system allows for a considerable
increase of the user’s flexibility to perform his work and independence regarding his choice
of both hardware and operating system. Personal computers (laptop or desktop), main-frame
computers, tablets and smartphones are devices that can be used to fully access the system
without losing performance.

2. Three theoretical models

2.1. Damped harmonic oscillator

One physics experiment that can be used to illustrate some aspects of advanced model fitting to
experimental results concerns the description of motions in a spring–mass system consisting
of a mass, m, suspended on a spring with elastic constant K. In static equilibrium, the length
of the spring, ��, depends on the equilibrium between the weight and on the spring’s elastic
force. Therefore,

�� = g

K
m, (1)

where g is gravitational acceleration. The mass remains at its vertical position of
equilibrium, z0.

In general terms, the equation of motion that describes the position of the mass with
respect to its equilibrium position Z = z − z0 is the well-known second degree differential
equation

d2Z(t)

dt2
+ b

m

dZ(t)

dt
+ K

m
Z(t) = Fexternal(t)

m
, (2)

where b is the friction coefficient and Fexternal(t) is a user-defined external force acting on
the system. Equation (2) has several solutions. In the case of Fexternal(t) = 0, the equation of
motion Z(t) depends only on the system’s parameters m, b and K. ω0 = √

K/m is the natural
frequency of the system and λ = b/(2m) is the damping coefficient. The particular solution
of equation (2) when λ < ω0 is

Z(t) = ZM e−λt cos(ωt + φ), (3)

where ω =
√

ω2
0 − λ2. φ and ZM depend on the initial conditions of the motion. Starting from

its initial position Z(0) the mass m oscillates around the equilibrium position z0 with period
T = 2π/ω and decreasing amplitude.

If λ � ω0, the mass m has a damped aperiodic motion towards its final position z0 starting
from Z(0).

In the particular case Fexternal(t) = F0 cos(ωat) and λ < ω0, it is easy to demonstrate that

Z(t) = ZM e−λt cos(ωt + φ) + A(ωa) cos(ωat + α), (4)

where

A(ωa) = F0

m
√(

ω2
0 − ω2

a

)2 + 4λ2ω2
a

(5)

and

tan α = 2λωa

ω2
0 − ω2

a

. (6)

Obviously, other external forces will produce different permanent regimes after the initial
natural motion of the mass vanishes.
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2.2. X-ray diffraction

In advanced physics laboratories, students often have contact with x-ray diffraction
experiments where it is possible to obtain structural information about condensed matter
systems. In the case of soft matter systems that do not present long-range structural order,
large-angle diffraction profiles can reveal details of the local molecular organization in the
range from 10−10 to 5 × 10−9 m [4].

X-ray counters used in the experiments often produce profiles with a large number of
points. The x-ray profiles where the scattered intensity is plotted as a function of scattered
vector amplitude can, in some cases, be described by a sum of the Gaussian profiles

I(q) = I0 +
N∑

k=0

ak e−(q−qk )
2/b2

k , (7)

where I0 is the background contribution, qk, ak and bk are the wave vectors, amplitudes and
line widths of each characteristic structural distance numbered with index k, respectively.

2.3. NMR relaxation

Condensed matter physics students, at the PhD level, occasionally have to obtain molecular
dynamics information using NMR relaxometry (NMRD) [5, 6]. The proton spin–lattice
relaxation rate, T −1

1 , as a function of frequency and temperature might present features that
can be interpreted in terms of relaxation models that are associated with different types
of molecular motions [5–8]. Molecular rotations and reorientations (R), translational self-
diffusion (SD) and slow collective motions are common examples considered when analysing
NMRD results obtained for isotropic liquids and liquid crystals [6]. In the case of an isotropic
phase of a liquid crystal of ellipsoid molecules T −1

1 can be approximated by

T −1
1 = (

T −1
1

)
R + (

T −1
1

)
SD + (

T −1
1

)
OPF (8)

with (
T −1

1

)
R = AR

[
τS

1 + ω2τ 2
S

+ 4τS

1 + 4ω2τ 2
S

+ τL

1 + ω2τ 2
L

+ 4τL

1 + 4ω2τ 2
L

]
, (9)

(
T −1

1

)
SD = 9

8
γ 4

�
2
( μ0

4π

)2 nτD

d3
[T (α, ωτD) + 4T (α, 2ωτD)] (10)

and
(
T −1

1

)
OPF = AOPF

ω1/2

∫ ωCh/ω

ωCl/ω

√
x

1 + (x + ω0/ω)2
dx. (11)

In this relaxation model (equation (8)), τL and τS are correlation times associated with molecular
rotations/reorientations along the long molecular axis and around a perpendicular axis, and τD

is a correlation time associated with the translational diffusion displacements. n is the density
of spins and d is the distance of the closest lateral approach between molecules [9]. ωCl and ω0

are low cut-off frequencies, and ωCh is a high cut-off frequency associated with fluctuations
of order (OPF) observed close to the isotropic–nematic transition. AR and AOPF are pre-factors
that depend on addition physical parameters of the liquid crystal compound (see the electronic
supplementary information (ESI), available from stacks.iop.org/EJP/35/015017/mmedia).
τS, τL and τD are temperature dependent and are usually described by Arrhenius laws
τS = τST ref exp(ES(T −1 − T −1

ref )/8.31), τL = τLT ref exp(EL(T −1 − T −1
ref )/8.31) and τD =

τDT ref exp(ED(T −1 − T −1
ref )/8.31), respectively. Tref is a reference temperature and ES, EL and

ED are activation energies.
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Figure 1. Experimental results obtained for a spring–mass system [10], as explained in
the text. (a) The spring’s length as a function of the suspended mass; (b) amplitude of
oscillation measured at time nT, n = 0,1,2,3, . . . , where T is the oscillation period; (c)
amplitude of oscillation measured as a function of the frequency of the harmonic applied
force; (d) phase difference between the mass motion’s amplitude and the applied force
as a function of the oscillation frequency of the force.

3. Experimental results

3.1. Damped harmonic oscillator

Using a damped harmonic oscillator experimental setup [10], which includes a spring with
unknown elastic constant K, a mass m = 0.102 kg, and a unknown friction coefficient b, it
is possible to obtain four sets of experimental results corresponding to the motions of the
harmonic oscillator, described by the model equations (1), (3), (5) and (6). These experimental
results are presented in figures 1(a), (b), (c) and (d), respectively. The position of the mass was
determined with an uncertainty of ±10−3 m. The frequency of the oscillation of the external
force acting on the system was controlled with a resolution of ±0.01 Hz. The phase difference
between oscillations of the mass and the external force was measured with an uncertainty of
5◦. The results of figure 1(b) were obtained regularly with a sampling time equal to the period
of oscillation.

3.2. X-ray diffraction

In figure 2 is presented the x-ray diffraction profile obtained for a liquid crystal compound
using Cu Kα radiation with a wave length λ = 1.54 Å.
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Figure 2. X-ray diffraction profile obtained for a liquid crystal compound.

300 315 330
T(K)

0

1

2

3

4

5

T
1-1

(s
-1

)

(a) NMR @ 100MHz

10
3

10
4

10
5

10
6

10
7

10
8

f(Hz)

10
-1

10
0

10
1

10
2

10
3

T
1-1

(s
-1

)

(b) NMR @ (313K) 40
o
C

Figure 3. Experimental 1H spin–lattice relaxation rates: (a) results obtained at a fixed
frequency for a Larmor resonance frequency of 100 MHz; (b) results obtained as a
function of the Larmor frequency for a fixed temperature T = 40 ◦C.

3.3. NMR relaxation

In figure 3 are presented the hydrogen proton spin–lattice relaxation rate experimental results
as a function of temperature for a fixed Larmor frequency of 100 MHz, and as a function of
frequency for a fixed temperature. The results for frequencies below 20 MHz were obtained
using fast field cycling NMR relaxometry [11–13]. For the measurements at 100 MHz, standard
NMR relaxometry techniques were used [7].

4. Model fits

The analysis of experimental results presented in figures 1–3 with respect to the physics
models previously introduced requires the fitting of the models’ equations to the experimental

6
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results in order to obtain the physical parameters relevant for each system. One common way
to obtain the best fit is by the minimization of the least squares

χ2(p1, . . . , pm) =
N∑

k=1

(
ye

k − yt
k(p1, . . . , pm, xe

k)
)2

σ e2
k

, (12)

where yt
k(p1, . . . , pm, xe

k) is the value of the model equation calculated for the value xe
k, and the

model parameters pk with k = 1, . . . , M, (xe
k, ye

k ± σ e
k ) are the experimental points 1, . . . , N,

with σ e
k being the experimental uncertainty of ye. In most experiments, the uncertainty of

the independent variable is controlled in order to reduce its influence on the measured
observable. The case where the uncertainties of both x and y are important will be addressed
below.

A rule of thumb, in normal practice, is that a ‘moderately’ good fit is obtained when
the value of χ2(p1, . . . , pm) � N − M (N − M being the number of degrees of freedom) is
obtained after the minimization [14].

The χ2 minimization considering the model equations (1), (3)–(8) presents different types
of challenges. Technically, the fit of equation (1) to the data of figure 1(a) is the most simple
one and can be considered a trivial case. The fits of the other model equations require more
sophisticated numerical methods to perform the least-squares minimization and some user
skills in the use of the available software packages.

On fitteia’s website (see footnote 1), users can perform both simple and advanced model
fits to experimental data with different degrees of complexity using a common interface that
drastically reduces the user’s overhead work required to perform identical data analysis using
other software packages. The fitter module available presents three distinct sections: (1) data,
(2) plot parameters, and (3) function and parameters. In the data section the experimental
points are introduced as a table with three columns where the values of ‘xe’, ‘ye’ and ‘σ e’
(one point (xe

k, ye
k ± σ e

k ) per line) are separated by tab characters or white spaces. Copy
and paste actions from spread sheet tables or text files can help filling up the data table. In
the plot parameters section, the plots can be set according to the data being analysed. The
model equation y = f (p1, . . . , pm, xe

k) is introduced in the one-line text box in the function
and parameters section, using the syntax of language C. Both dependent and independent
variable names (y and x) and the parameter names (p1, . . . , pM) have to be declared (additional
information is available in the ESI, available from stacks.iop.org/EJP/35/015017/mmedia).

The fitteia’s fitter module core is a powerful minimization routine from the CERN library
called MINUIT [15]. MINUIT contains three different minimization methods SCAn, SIMplex
and MIgrad. A sequential use of these methods and a call to MINUIT MINOS method to
compute the uncertainties of the fitting parameters is a powerful strategy to find the best
absolute minimum of equation (12). As with all minimization routines the user should provide
an ‘educated guess’ of the initial values of the fitting parameters to minimize the computation
time and to avoid stopping the minimization on a local minimum in the parameters’ space.
Nevertheless, fitteia has proven to be quite robust with respect to this issue and all parameters
are initialized with a finite value to prevent some unnecessary mistakes.

4.1. Damped harmonic oscillator

The first step in the analysis of the experimental results obtained for the damped harmonic
oscillator is to obtain the best numerical model fit to each data set of the experimental results
separately.

7
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Table 1. Model parameters obtained from the best model fits to the experimental results
explained in the text. m = 0.102 kg.

Data ��(m) A(t) A( fa) α( fa) All
Figure 1(a) 1(b) 1(c) 1(d) 4

K (N m−1) 9.9 ± 0.2 – 10.359 ± 0.006 10.27 ± 0.03 10.4 ± 0.1
d0 (10−3m) −0.6 ± 1.3 – – – 2.7 ± 0.3
λ (s−1) – 0.139 ± 0.004 0.163 ± 0.003 0.12 ± 0.02 0.142 ± 0.001
Zt0 (m) – 0.103 ± 0.002 – – 0.105 ± 0.001
Z∞ (m) – 0.003 ± 0.001 – – 0.002 ± 0.001
F0 (N) – – 0.037 ± 0.001 – 0.033 ± 0.001
a0 – – – 0.32 ± 0.03 0.34 ± 0.02

In the case of the spring’s elongation as a function of the suspended mass (figure 1(a)) the
model used was �� = (g/K)m + d0. d0 was introduced in equation (1) to take into account
possible offsets in the experiment, when measuring ��.

In the case of the data set corresponding to the free damped oscillations, equation (3) can
be simplified when the experimental measurements are made regularly at times t = t0 + nT ,
where T is the period of oscillation, n = 0, . . . N, Z(t0 + nT ) = (Zt0 − Z∞) e−λnT + Z∞. Z∞
should be null, but it can be introduced to take into account possible offset deviations from the
initial equilibrium value.

In the case of forced oscillations, the amplitude of oscillation A(ωa) given by equation (5)
can be written in terms of fa = ωa/(2π), A( fa) = (F0/m)

[(
K

/
m−4π2 f 2

a

)2+16π2λ2 f 2
a

]−1/2
.

As for the phase difference between the external force oscillations and the mass oscillations
α given by equation (6) some attention is required since arctan(x) changes by a value of π

when the argument changes sign. Therefore, using the (? :) conditional operator equation
(6) can be written as α = ( fa <

√
K/(4π2m)) ? arctan

(
4πλ fa

/(
K/m − 4π2 f 2

a

)) + α0 :
arctan

(
4πλ fa

/(
K/m − 4π2 f 2

a

)) + α0 + π , α0 is an offset angle.
The fitting parameters obtained from each best fit to the experimental results are presented

in table 1. The fitting PDF reports produced with fitteia’s report module can be found in the
ESI (available from stacks.iop.org/EJP/35/015017/mmedia).

When analysing the fitting parameters in table 1, it becomes obvious that the independent
fits of ��(m), A(t), A( fa) and α( fa) give different results for the physical parameters of the
system K and λ. The differences depend on the influence of the experimental conditions and
experimental uncertainties of the experimental results. A discussion is required in order to
conclude about the values of K and λ for the system.

The analysis of the experimental results in figure 1 can be improved if a detailed analysis
of the experimental uncertainties is made and if the analysis of the experimental results is
made by performing a fit that takes into account all data and a global least-squares minimum
target.

In the case of the forced oscillations, it should be mentioned that the experimental
uncertainty of both the amplitude of oscillation A( fa) and the phase difference α should
be estimated taking into account the stability of the external force. Indeed, if the external
frequency varies within the range fa ± σ fa , then

σ e2
k � σ

y2
k +

(
dy

dfa

)2

k

σ 2
fa
. (13)

From equation (13), it is clear that σ e
k � σ

y
k unless σ

y
k ∼ σ fa |dy/d fa|k, which means that the

uncertainty of fa is relevant, particularly when |dy/d fa|k is large.
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The derivative dy/d fa must be calculated numerically [16]; otherwise, the use of the fitting
model to compute the propagated uncertainty would introduce a bias in the minimization
procedure. The fitter module of fitteia includes a calculator text box in the data section
where users can introduce a sequence of operations involving the columns of the data table.
Removing, adding and reordering of columns become quite easy, in addition to calculations
involving columns. Therefore, starting from the columns in the data table (e.g. corresponding
to ‘ fa’,‘A’ and ‘σ A’), the calculations associated with equation (13) can be done by executing
the following fitteia instructions:
c1 c2 c3 0.01
c1 c2 c3 dc2/dc1 c4
c1 c2 sqrt(c3*c3+c4*c4*c5*c5)
Each line of the above sequence transforms the data table into another. The first line transforms
the three-column table into a four-column table keeping columns 1–3 and adding a fourth
column with a constant value ‘0.01’ corresponding to σ fa . The second line in the sequence
transforms the four-column table by moving column four to the fifth position and introducing
in the fourth position the numerical derivative of column two with respect to column one.
Finally, a three-column table is obtained with columns one and two equal to the original ones
and putting in third position a column with the values of σ e

k calculated according to equation
(13). The effect of the correction on the experimental error bars can be observed in figures 4(c)
and (d).

The least-squares minimization, with a global minimum target that takes into account all
data and the different model equations, is fairly simple using fitteia. This type of problem is
equivalent to a multidimensional fit. fitteia’s ‘Expert’ user mode presents an interface where
a second independent variable can be introduced and used as a flag in nested conditional tests
that help to apply the proper physical model to the corresponding experimental data. Naming
the second independent variable ‘flag’, we can use the statement ‘flag = 1’ for ��(m), ‘flag =
2’ for A(t), ‘flag = 3’ for A( fa) and ‘flag = 4’ for α( fa). In the data text box, the experimental
results are introduced in blocks separated by reserved comment lines ‘# DATA flag = 1’, etc.

Defining x and y as the generic independent and dependent variables, respectively, the
generic model equation can be written using the (? :) conditional operator in a nested sequence.

y=(flag==1) ? g/K∗x+d0 :
(flag==2) ? (Zt0−Zinf)∗exp(−l∗x)+Zinf :
(flag==3) ? F0/m/sqrt(pow(K/m−4∗pi∗pi∗x∗x, 2.0)+16∗pi∗pi∗l∗l∗x∗x) :
(x>sqrt(K/m)/(2∗pi)) ? (atan(2∗l∗2∗pi∗x/(K/m−4∗pi∗pi∗x∗x))+pi+a0)∗180/pi :
(atan(2∗l∗2∗pi∗x/(K/m−4∗pi∗pi∗x∗x))+a0)∗180/pi

In the case of ‘flag = 4’ an additional test is required to choose the proper expression on
the calculus of α( fa) according to the condition ω > ω0. exp(x) ≡ ex, pow(x, p) ≡ xp,
sqrt(x) ≡ √

x and atan(x) ≡ arctan (x).
In this way, the minimization of equation (12) takes into account all experimental results

and selectively considers each model equation according to the corresponding data set.

χ2(K, λ, d0, Zt0 , Zt∞ , F0, a0)=
N1∑

k=1

(
��e

k − ��t
k(K, d0, mk)

)2

σ e2
k

+
N2∑

k=1

(
Ae

k − At
k(λ, Zt0 , Zt∞ , tk)

)2

σ e2
k

+
N3∑

k=1

(
Ae

k − At
k(K, λ, F0, fak )

)2

σ e2
k

+
N4∑

k=1

(
αe

k − αt
k(K, λ, F0, fak , a0)

)2

σ e2
k

. (14)
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Figure 4. Experimental results obtained for a spring–mass system [10], taking into
account the uncertainties of both x and y in the case of plots (c) and (d). (a) The spring’s
length as a function of the suspended mass; (b) amplitude of oscillation measured at time
nT, n = 0, 1, 2, 3, . . . , where T is the oscillation period; (c) amplitude of oscillation
measured as a function of frequency of the harmonic applied force; (d) phase difference
between the mass motion’s amplitude and the applied force as a function of oscillation
frequency of the force.

As it happened that K and λ are present in different model equations, the global
minimization searches for the values for these parameters that minimize χ2 and consequently
minimize all terms in equation (14) in a consistent way.

fitteia presents a simple interface that helps users to prepare the figures with the plots of
the fitting curves according to the details of each data set.

In figure 4 are shown the best fits obtained using the above described global
minimization procedure (additional information can be found in the ESI, available from
stacks.iop.org/EJP/35/015017/mmedia). As can be observed in figures 4(c) and (d), the
consequence of propagating the uncertainty in the frequency fa to variables A( fa) and φ( fa)

is to obtain larger error bars for the experimental points where dy/dx is larger.
The values of the fitting parameters for this fit are presented in column ‘all’ in table 1.

A discussion about the advantages of both minimization approaches can be made but the
important point here is to present the two strategies.

4.2. X-ray diffraction

The data analysis of the experimental results of the x-ray diffraction experimental presented in
figure 2 presents a different type of challenge with respect to the previous example. First, the
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Table 2. Fitting parameters (as presented in the ESI fit report generated by fitteia,
available from stacks.iop.org/EJP/35/015017/mmedia) obtained from the fit of model
equation (7) to the experimental results of figure 2. χ 2

t = 8.782 04.

a = 153.21 ± 5.4086 a2 = 200 ± 29.723
a0 = 252.52 ± 15.052 b2 = 4 ± 0.12931
b0 = 1 ± 0.014 206 q2 = 10.419 ± 0.12 791
q0 = 2.4294 ± 0.040 112 a3 = 300 ± 9.6683
a1 = 93.836 ± 7.8405 b3 = 2.3904 ± 0.142 58
b1 = 1.7183 ± 0.294 67 q3 = 14.164 ± 0.0804 98
q1 = 4.7695 ± 0.148 36

data set has 685 points, more than eight times the number of points of the previous example;
second, we know in advance that the model fit is composed of a sum of several Gaussian
curves and besides being necessary to obtain the curve that represents the sum there are clear
advantages in being able to see each contribution separately.

The number of experimental points is not a limitation as far as the computation time
remains acceptable, but even for a moderate number of points the fit of a nonlinear function
with ten or more independent fitting parameters can be very CPU demanding. Therefore, a
good strategy to analyse a large experimental data set is to choose a subset of the experimental
points larger than the set of fitting parameters in order to obtain a first fit and then use the
obtained fitting parameters as starting guess values for the final fit with all data. fitteia’s
fitter module helps to achieve this by providing two conditional pre-processing commands,
‘# fitif 〈condition〉, 〈sampling step〉’ and ‘# plotif 〈condition〉, 〈sampling step〉’, that can be
introduced in the DATA text box as reserved comment lines. The first command is considered
when fitting, the second command is considered only when plotting the data and the fitting
curves using the model parameter values (e.g. simulating the dependent variable as a function
of the independent variable using the model equation). ‘# fitif 1, 10’ can be used to select a
subset of the experimental data where one point every ten points is considered for the fit. The
condition here is always ‘1’ so the test is applied to all data points.

fitteia’s fitter module also helps users to generate curves that can be plotted together with
the curve that corresponds to the model equation. If the q and y are the independent and
dependent variables the scattered x-ray intensity can be modelled by equation (7) with four
Gaussian contributions and an offset constant.

y = a + a0*exp(-pow((q-q0)/b0,2.0)) + a1*exp(-pow((q-q1)/b1,2.0)) +
a2*exp(-pow((q-q2)/b2,2.0)) + a3*exp(-pow((q-q3)/b3,2.0))

If the plus symbol ‘+’ is replaced by ‘\+’, in the above expression, then, after compilation,
the fitteia’s fitter interface is modified and allows for the selection of the line type, color and
label of the curves associated with the terms added with each ‘\+’. In the following case

y = a \+ a0*exp(-pow((q-q0)/b0,2.0)) \+ a1*exp(-pow((q-q1)/b1,2.0)) \+
a2*exp(-pow((q-q2)/b2,2.0)) \+ a3*exp(-pow((q-q3)/b3,2.0))

each term will be represented by its corresponding plot line according to the values of ak, bk

and qk.
In figure 5 is presented the best fit obtained using both the pre-processing command ‘#

fitif 1, 10’ and the contributions corresponding to all the terms in the model equation.
There is a clear advantage in observing separately the contributions to total scattered

intensity since, in addition to the best-fitting curves, simulation plots can put into evidence the
effects of the model parameters separately. In table 2 are presented the values of the model
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Figure 5. X-ray diffraction results fitted with model equation (7). The fit was done
considering a subset of the experimental data (as an example of fitteia’s features), as
explained in the text.

parameters corresponding to the best fit. They are presented as they are obtained from the
fitteia report without taking into account the coherent correspondence between the significant
digits in both values and uncertainties.

4.3. NMR relaxation

The analysis of the NMR data of figure 3 using model equation (8) with contributions (10)
and (11) presents in addition to the technical problems referred to previously an additional
technical challenge. In fact, the contribution of equation (11) must be obtained numerically
and the integral has to be calculated every time the function is called. In addition, some of the
functions used are too cumbersome to be introduced using a simple line of text. One solution
for these problems is to ask the fitteia system’s manager to include the necessary functions in
the user functions library. Another solution is to use fitteia with an increased level of privilege.
In the latter, users are allowed to program their own functions library and freely program the
necessary code for their needs.

In the case of equation (8), all functions are already available in the system. The equation
to be fitted to the spin–lattice relaxation data, T −1

1 , taking into account both its dependence
on the temperature, T , and on the Larmor frequency, f , can be written taking advantage of
the previous examples. In fitteia’s expert mode, it is possible to define a model that considers
different independent variables (in the case of the spring–mass system three independent
variables were considered). For the NMR data we can consider z ≡ T −1

1 (T, f ) and define x
and y as independent variables. The meaning of x and y is either frequency or temperature
depending on the context. In any case x refers to the first column and y takes the value
assigned in the data section using the statement format ‘#DATA y=· · ·’. The experimental data
is introduced in two DATA blocks using the following arrangement:

# DATA y=100e6
333 2.08333 0.104167
329 2.1978 0.10989
. . .
. . .
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# DATA y=313
1e+08 2.65957 0.132978

1.79991e+07 7.42497 0.371249
. . .
. . .

The frequency is always larger than the temperature and is never lower than 1 kHz. It is
clear that when y > 500, y ≡ temperature and x is the frequency and when y < 500, y ≡
frequency and x is the temperature. In this way additional DATA can be introduced for different
temperatures and different frequency dependences (see Sebastião et al [17]). Assuming that(
T −1

1

)
R is the sum of two ‘BPP’ contributions

((
T −1

1

)
R ≡ BPP(τS) + BPP(τL)

)
,
(
T −1

1

)
SD is

calculated using ‘Torrey1’ function
((

T −1
1

)
SD ≡ Torrey1

)
, and

(
T −1

1

)
OPF ≡ OPF (additional

information is available in the ESI, available from stacks.iop.org/EJP/35/015017/mmedia)

z=(
(y>500.0) ? BPP(y,Arot,tauL*exp(EL/8.31*(1.0/x-1.0/Tref))) :

BPP(x,Arot,tauL*exp(EL/8.31*(1.0/y-1.0/Tref)))
) + (
(y>500.0) ? BPP(y,Arot,tauS*exp(ES/8.31*(1.0/x-1.0/Tref))) :

BPP(x,Arot,tauS*exp(ES/8.31*(1.0/y-1.0/Tref)))
)
\+
(
(y>500.0) ?
Torrey1(y,d,r,n,r*r*1e-20/(6*Dref*exp(-ED/8.31*(1.0/x-1.0/Tref)))) :
Torrey1(x,d,r,n,r*r*1e-20/(6*Dref*exp(-ED/8.31*(1.0/y-1.0/Tref))))

)
\+
(
(y>500.0) ? OPF(y, Aopf, f0, fcm, fcM, np) :

OPF(x, Aopf, f0, fcm, fcM, np)
)

A close analysis of the above expression shows that, according to the number of ‘\+’
symbols, three contributing curves will be plotted separately. The first curve will correspond
to the sum of two ‘BPP’ functions, the second will be ‘Torrey1’ and ‘OPF’ the third. This is
a second example of the independent plot of the model contributions presented previously for
the x-ray fit. In addition, it can be observed that each contribution includes a conditional test
‘y > 500’ that changes the meaning of x and y. ‘BPP( f , A, τ )’ is a function of frequency f , a
pre-factor A, and a characteristic time τ (T ). Since τ (T ) depends on the temperature T , ‘BPP’
depends on a frequency and a temperature. According to the data coding used x and y alternate
meanings and if y > 500 it is for sure a frequency, as the experimental results were obtained
for temperatures below 500 K.

The model parameters obtained for the best fit are presented in table 3 and the model-fitting
curves are presented in figure 6.

The plots presented in figures 1–6 were produced using the fitter and plotter
interface modules available on http://fitteia.org [18]. In the ESI (available from
stacks.iop.org/EJP/35/015017/mmedia) additional information can be found concerning the
use of fitteia’s web service.
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Figure 6. Model fit to the experimental 1H spin–lattice relaxation rates: (a) fitting
curves plotted as a function of temperature, for the fixed Larmor resonance frequency of
100 MHz; (b) fitting curves plotted as a function of the Larmor frequency, for the fixed
temperature T = 40 ◦C as explained in the text.

Table 3. Fitting parameters (as presented in the ESI fit report generated by fitteia,
available from stacks.iop.org/EJP/35/015017/mmedia) obtained from the fit of model
equation (8) to the experimental results as explained in the text. χ2[313 K] = 8.819 02,
χ 2[100 MHz] = 0.184 23, χ 2

t = 9.003 25.

Arot = 5.7688 × 10+08 ± 8.45 × 10+06 Dre f = 5.44 × 10−11 (fixed)
tauS = 1.45 × 10−09 (fixed) ED = 32 800 (fixed)
ES = 294 12 (fixed) Tre f = 313 (fixed)
tauL = 3.36 × 10−10 (fixed) Aop f = 17438 ± 1017.9
EL = 468 28 ± 6860.6 f 0 = 1 × 10+05 (fixed)
d = 5 (fixed) f cM = 4.25 × 10+07 (fixed)
n = 4.59 × 10+22 (fixed) f cm = 6.8381 × 10+05 ± 998 54
r = 4 (fixed) np = 10 (fixed)

5. Conclusions

It is shown that when analysing experimental results in terms of theoretical models the concept
of best fit is not only related to the numerical quality of the model fit but also connected with
the physical coherence between the model parameters obtained. This is particularly true in the
case of experimental observables that depend on different experimental variables known prior
to the experiment and that can be used to better describe the studied system. Multidimensional
fits require not only additional computation skills but also a method to easily understand
the details of the minimization process. A web-based interface to a software package is
presented that allows users to perform online model fits, data plots and report writing using
models with different degrees of complexity. The details of the methods used to fit models to
experimental data with one, two, . . . , n dimensions were presented here. The methods used
can be implemented in a relatively simple way using the interface but they can also be used to
develop solutions using other numerical software packages. One important difference between
the presented web-solution for the model fitting with respect to other solutions is the possibility
of sharing working folders with other users involved in the project, no matter where they are
physically or what type of computer system they use. The efficiency thus achieved is worth

14

http://stacks.iop.org/EJP/35/015017/mmedia


Eur. J. Phys. 35 (2014) 015017 P J Sebastião

noticing. Both graduate and post-graduate students find this solution quite useful during the
learning stage, where they obtain the basic skills to independently perform model analysis and
fitting to experimental data. Later, former students find the system also useful to perform more
complex data analysis during their MSc and/or PhD research work.
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hosting the two computers that presently run the fitteia server. Thanks also to Alberto Ferreira
and João Godinho, former MEFT IST-ULisboa students and fitteia users, for their commitment
to the development of a user friendly translator to C, included in the fitteia fitter interface since
2011.

References

[1] Montgomery D C, Peck E A and Vining G 2001 Introduction to Linear Regression Analysis (Wiley
Series in Probability and Statistics) 4th edn (New York: Wiley)

[2] Peterlin P 2010 Data analysis and graphing in an introductory physics laboratory: spreadsheet
versus statistics suite Eur. J. Phys. 31 919–31

[3] Fernandes J C, Ferraz A and Rogalski M S 2010 Computer-assisted experiments with oscillatory
circuits Eur. J. Phys. 31 299–306

[4] Filip D, Cruz C, Sebastião P J, Ribeiro A C, Vilfan M, Meyer T, Kouwer P H J and Mehl G H 2007
Structure and molecular dynamics of the mesophases exhibited by an organosiloxane tetrapode
with strong polar terminal groups Phys. Rev. E 75 11704

[5] Dong R Y 1997 Nuclear Magnetic Resonance of Liquid Crystals (New York: Springer)
[6] Sebastião P J, Cruz C and Ribeiro A C 2009 Nuclear magnetic resonance spectroscopy of liquid

crystals Advances in Proton NMR Relaxometry in Thermotropic Liquid Crystals ed R Y Dong
(Singapore: World Scientific) pp 129–67 chapter 5

[7] Farrar T C and Becker E D 1971 Pulse and Fourier Transform NMR (New York: Academic)
[8] Abragam A 1961 The Principles of Nuclear Magnetism (Oxford: Clarendon)
[9] Torrey H C 1953 Nuclear spin relaxation by translational diffusion Phys. Rev. 92 962–9

[10] PASCO Scientific Pasco model 9201a damped harmonic oscillator
[11] Noack F 1986 NMR field-cycling spectroscopy—principles and applications Prog. Nucl. Magn.

Reson. Spectrosc. 18 171–276
[12] Kimmich R and Anoardo E 2004 Field-cycling NMR relaxometry Prog. Nucl. Magn. Reson.

Spectrosc. 44 257–320
[13] Sousa D M, Marques G D, Cascais J M and Sebastião P J 2010 Desktop fast-field cycling nuclear

magnetic resonance relaxometer Solid State Nucl. Magn. Reson. 38 36–43
[14] Press W H, Teukolsky S A, Vetterling W T and Flannery B P 1992 Numerical Recipes in C: The

Art of Scientific Computing 2nd edn (New York: Cambridge University Press)
[15] CERN 2000 Minuit http://wwwasdoc.web.cern.ch/wwwasdoc/minuit/minmain.html
[16] Holoborodko P 2008 Smooth noise robust differentiators www.holoborodko.com/pavel/numerical-

methods/numerical-derivative/smooth-low-noise-differentiators/
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