Type theory and category theory

Michael Shulman

http://www.math.ucsd.edu/~mshulman/hottminicourse2012/
10 April 2012
(1) A programming language.
(2) A foundation for mathematics.
(3) A calculus for category theory.
(1) A programming language.
(2) A foundation for mathematics.
(3) A calculus for category theory.
(1) + (2): A computable foundation for mathematics.
(2) 3 : A way to internalize mathematics in categories.
(1) +3 : A categorical description of programming semantics.

(1) A programming language.
(2) A foundation for mathematics based on homotopy theory.
(3) A calculus for $(\infty, 1)$-category theory.
(1) +2 : A computable foundation for homotopical mathematics.
(2) 3 : A way to internalize homotopical mathematics in categories.
(1)+3: A categorical description of programming semantics.

- Today: Type theory, logic, and category theory
- Wednesday: Homotopy theory in type theory
- Thursday: Type theory in $(\infty, 1)$-categories
- Friday: Current frontiers
(1) Type theory and category theory
(2) Type constructors and universal properties
(3) Type theory and logic
(4) Predicate logic and dependent types
(5) Equality types

Type theory consists of rules for manipulating typing judgments:

$$
\left(x_{1}: A_{1}\right),\left(x_{2}: A_{2}\right), \ldots,\left(x_{n}: A_{n}\right) \vdash(b: B)
$$

- The x_{i} are variables, while b stands for an arbitrary expression.
- The turnstile \vdash and commas are the "outermost" structure.

This should be read as:
In the context of variables x_{1} of type A_{1}, x_{2} of type A_{2}, \ldots, and x_{n} of type A_{n}, the expression b has type B.

Type theory consists of rules for manipulating typing judgments: $\left(x_{1}: A_{1}\right) \quad, \quad\left(x_{2}: A_{2}\right), \quad \ldots, \quad\left(x_{n}: A_{n}\right) \vdash \quad(b: B)$

- The x_{i} are variables, while b stands for an arbitrary expression.
- The turnstile \vdash and commas are the "outermost" structure.

This should be read as:
In the context of variables x_{1} of type A_{1}, x_{2} of type A_{2}, \ldots, and x_{n} of type A_{n}, the expression b has type B.

$$
\left(x_{1}: A_{1}\right),\left(x_{2}: A_{2}\right), \ldots\left(x_{n}: A_{n}\right) \vdash(b: B)
$$

(1) Programming: A_{i}, B are datatypes (int, float,..); b is an expression of type B involving variables x_{i} of types A_{i}.
(2) Foundations: A_{i}, B are "sets", b specifies a way to construct an element of B given elements x_{i} of A_{i}.
(3) Category theory: A_{i}, B are objects, b specifies a way to construct a morphism $\prod_{i} A_{i} \rightarrow B$.

The rules of type theory come in packages called type constructors. Each package consists of:
(1) Formation: a way to construct new types.
(2) Introduction: ways to construct terms of these types.
(3) Elimination: ways to use them to construct other terms.
(4) Computation: what happens when we follow (2) by 3 .

The rules of type theory come in packages called type constructors. Each package consists of:
(1) Formation: a way to construct new types.
(2) Introduction: ways to construct terms of these types.
(3) Elimination: ways to use them to construct other terms.
(4) Computation: what happens when we follow (2) by 3 .

Example (Function types)

(1) If A and B are types, then there is a new type B^{A}.

The rules of type theory come in packages called type constructors. Each package consists of:
(1) Formation: a way to construct new types.
(2) Introduction: ways to construct terms of these types.
(3) Elimination: ways to use them to construct other terms.
(4) Computation: what happens when we follow (2) by 3 .

Example (Function types)

(1) If A and B are types, then there is a new type B^{A}.
(2) If $(x: A) \vdash(b: B)$, then $\lambda x \cdot b: B^{A}$.

The rules of type theory come in packages called type constructors. Each package consists of:
(1) Formation: a way to construct new types.
(2) Introduction: ways to construct terms of these types.
(3) Elimination: ways to use them to construct other terms.
(4) Computation: what happens when we follow (2) by 3 .

Example (Function types)

(1) If A and B are types, then there is a new type B^{A}.
(2) If $(x: A) \vdash(b: B)$, then $\lambda x . b: B^{A}$.
(3) If $a: A$ and $f: B^{A}$, then $f(a): B$.

The rules of type theory come in packages called type constructors. Each package consists of:
(1) Formation: a way to construct new types.
(2) Introduction: ways to construct terms of these types.
(3) Elimination: ways to use them to construct other terms.
(4) Computation: what happens when we follow (2) by 3 .

Example (Function types)

(1) If A and B are types, then there is a new type B^{A}.
(2) If $(x: A) \vdash(b: B)$, then $\lambda x \cdot b: B^{A}$.
(3) If $a: A$ and $f: B^{A}$, then $f(a): B$.

4 $(\lambda x . b)(a)$ computes to b with a substituted for x.

$$
\text { square }:=\lambda x .(x * x)
$$

int square (int x) $\{$ return $(x * x) ;\}$
def square (x):
return ($\mathrm{x} * \mathrm{x}$)
square : : Int -> Int
square $\mathrm{x}=\mathrm{x} * \mathrm{x}$
fun square (n :int):int $=\mathrm{n} * \mathrm{n}$
(define (square n) (* n n))

$$
\text { square }:=\lambda x .(x * x)
$$

int square (int x) $\{$ return $(x * x) ;\}$
def square (x):
return ($\mathrm{x} * \mathrm{x}$)
square : : Int $->$ Int
square $\mathrm{x}=\mathrm{x} * \mathrm{x}$
fun square (n :int):int $=\mathrm{n} * \mathrm{n}$
(define (square n) (* n n))

$$
\text { square }(2) \equiv(\lambda x \cdot(x * x))(2) \rightsquigarrow 2 * 2
$$

In type theory as a foundation for mathematics:

- All the rules are just "axioms" that give meaning to undefined words like "type" and "term", out of which we can then build mathematics.
- One usually thinks of "types" as kind of like sets.
- We will consider them as more like "spaces".

As a calculus for a cartesian closed category:
(1) If A and B are types, then there is a new type B^{A}.

- For objects A and B, there is an exponential object B^{A}.

As a calculus for a cartesian closed category:
(1) If A and B are types, then there is a new type B^{A}.

- For objects A and B, there is an exponential object B^{A}.
(2) If $(x: A) \vdash(b: B)$, then $\lambda x \cdot b: B^{A}$.
- Any $Z \times A \rightarrow B$ has an exponential transpose $Z \rightarrow B^{A}$.

As a calculus for a cartesian closed category:
(1) If A and B are types, then there is a new type B^{A}.

- For objects A and B, there is an exponential object B^{A}.
(2) If $(x: A) \vdash(b: B)$, then $\lambda x \cdot b: B^{A}$.
- Any $Z \times A \rightarrow B$ has an exponential transpose $Z \rightarrow B^{A}$.
(3) If $a: A$ and $f: B^{A}$, then $f(a): B$.
- The evaluation map $B^{A} \times A \rightarrow B$.

As a calculus for a cartesian closed category:
(1) If A and B are types, then there is a new type B^{A}.

- For objects A and B, there is an exponential object B^{A}.
(2) If $(x: A) \vdash(b: B)$, then $\lambda x \cdot b: B^{A}$.
- Any $Z \times A \rightarrow B$ has an exponential transpose $Z \rightarrow B^{A}$.
(3) If $a: A$ and $f: B^{A}$, then $f(a): B$.
- The evaluation map $B^{A} \times A \rightarrow B$.
(4) $(\lambda x . b)(a)$ computes to b with a substituted for x.
- The exponential transpose, composed with the evaluation map, yields the original map.

As a calculus for a cartesian closed category:
(1) If A and B are types, then there is a new type B^{A}.

- For objects A and B, there is an exponential object B^{A}.
(2) If $(x: A) \vdash(b: B)$, then $\lambda x \cdot b: B^{A}$.
- Any $Z \times A \rightarrow B$ has an exponential transpose $Z \rightarrow B^{A}$.
(3) If $a: A$ and $f: B^{A}$, then $f(a): B$.
- The evaluation map $B^{A} \times A \rightarrow B$.
(4) $(\lambda x . b)(a)$ computes to b with a substituted for x.
- The exponential transpose, composed with the evaluation map, yields the original map.

Exactly the (weak) universal property of an exponential object.

Inference rules

Type theorists write these rules as follows.

$$
\begin{gathered}
\frac{(x: A) \vdash(b: B)}{\vdash\left(\lambda x \cdot b: B^{A}\right)} \\
\frac{\vdash\left(f: B^{A}\right) \quad \vdash(a: A)}{\vdash(f(a): B)}
\end{gathered}
$$

The horizontal line means "if the judgments above are valid, so is the one below". Wide spaces separate multiple hypotheses.

Type theorists write these rules as follows.

$$
\begin{gathered}
\frac{(x: A) \vdash(b: B)}{\vdash\left(\lambda x \cdot b: B^{A}\right)} \\
\frac{\vdash\left(f: B^{A}\right) \quad \vdash(a: A)}{\vdash(f(a): B)}
\end{gathered}
$$

The horizontal line means "if the judgments above are valid, so is the one below". Wide spaces separate multiple hypotheses.

Type theorists also write $A \rightarrow B$ instead of B^{A}, but this can be confusing when also talking about arrows in a category.

Basic principle

There is a natural correspondence between
(1) Programming: ways to build datatypes in a computer
(2) Foundations: coherent sets of inference rules for type theory
(3) Category theory: universal properties of objects in a category

Basic principle

There is a natural correspondence between
(1) Programming: ways to build datatypes in a computer
(2) Foundations: coherent sets of inference rules for type theory
(3) Category theory: universal properties of objects in a category

Therefore, if we can formalize a piece of mathematics inside of type theory, then

- it can be understood and verified by a computer, and
- it can be internalized in many other categories.

Informal mathematics

- We have the notion of a group: a set G with an element $e \in G$ and a binary operation satisfying certain axioms.
- We can prove theorems about groups, such as that inverses are unique: if $x y=e=x y^{\prime}$, then $y=y^{\prime}$.

We can also formalize this in ZFC, or in type theory, or in any other precise foundational system.

Example: Group objects

Internal mathematics

- A group object is a category is an object G with $e: 1 \rightarrow G$ and $m: G \times G \rightarrow G$, such that some diagrams commute:

Internal mathematics

- A group object is a category is an object G with $e: 1 \rightarrow G$ and $m: G \times G \rightarrow G$, such that some diagrams commute:

- In sets: a group.
- In topological spaces: a topological group.
- In manifolds: a Lie group.
- In schemes: an algebraic group.
- In rings ${ }^{\circ p}$: a Hopf algebra.
- In sheaves: a sheaf of groups.

Example: Internalizing groups

Taking the informal notion of a group and formalizing it in type theory, we have a type G and terms

$$
\vdash(e: G) \quad(x: G),(y: G) \vdash(x \cdot y: G)
$$

satisfying appropriate axioms.

Example: Internalizing groups

Taking the informal notion of a group and formalizing it in type theory, we have a type G and terms

$$
\vdash(e: G) \quad(x: G),(y: G) \vdash(x \cdot y: G)
$$

satisfying appropriate axioms.
The rules for interpreting type theory in categories give us:

- There is an automatic and general method which "extracts" or "compiles" the above formalization into the notion of a group object in a category.

Taking the informal notion of a group and formalizing it in type theory, we have a type G and terms

$$
\vdash(e: G) \quad(x: G),(y: G) \vdash(x \cdot y: G)
$$

satisfying appropriate axioms.
The rules for interpreting type theory in categories give us:

- There is an automatic and general method which "extracts" or "compiles" the above formalization into the notion of a group object in a category.
- Any theorem about ordinary groups that we can formalize in type theory likewise "compiles" to a theorem about group objects in any category.

Taking the informal notion of a group and formalizing it in type theory, we have a type G and terms

$$
\vdash(e: G) \quad(x: G),(y: G) \vdash(x \cdot y: G)
$$

satisfying appropriate axioms.
The rules for interpreting type theory in categories give us:

- There is an automatic and general method which "extracts" or "compiles" the above formalization into the notion of a group object in a category.
- Any theorem about ordinary groups that we can formalize in type theory likewise "compiles" to a theorem about group objects in any category.

We can use "set-theoretic" reasoning with "elements" to prove "arrow-theoretic" facts about arbitrary categories.

Outline
(1) Type theory and category theory
(2) Type constructors and universal properties
(3) Type theory and logic
(4) Predicate logic and dependent types
(5) Equality types

Recall: every type constructor comes with rules for
(1) Formation: a way to construct new types.
(2) Introduction: ways to construct terms of these types.
(3) Elimination: ways to use them to construct other terms.
(4) Computation: when we follow (2) by 3 .

Recall: every type constructor comes with rules for
(1) Formation: a way to construct new types.
(2) Introduction: ways to construct terms of these types.
(3) Elimination: ways to use them to construct other terms.
(4) Computation: when we follow (2) by 3 .

Example (Coproduct types)

(1) If A and B are types, then there is a new type $A+B$.

Recall: every type constructor comes with rules for
(1) Formation: a way to construct new types.
(2) Introduction: ways to construct terms of these types.
(3) Elimination: ways to use them to construct other terms.
(4) Computation: when we follow (2) by 3 .

Example (Coproduct types)

(1) If A and B are types, then there is a new type $A+B$.
(2) If $a: A$, then $\operatorname{inl}(a): A+B$. If $b: B$, then $\operatorname{inr}(b): A+B$.

Recall: every type constructor comes with rules for
(1) Formation: a way to construct new types.
(2) Introduction: ways to construct terms of these types.
(3) Elimination: ways to use them to construct other terms.
(4) Computation: when we follow 2 by 3 .

Example (Coproduct types)

(1) If A and B are types, then there is a new type $A+B$.
(2) If $a: A$, then $\operatorname{inl}(a): A+B$. If $b: B$, then $\operatorname{inr}(b): A+B$.
(3) If $p: A+B$ and $(x: A) \vdash\left(c_{A}: C\right)$ and $(y: B) \vdash\left(c_{B}: C\right)$, then $\operatorname{case}\left(p, c_{A}, c_{B}\right): C$.

Recall: every type constructor comes with rules for
(1) Formation: a way to construct new types.
(2) Introduction: ways to construct terms of these types.
(3) Elimination: ways to use them to construct other terms.
(4) Computation: when we follow 2 by 3 .

Example (Coproduct types)

(1) If A and B are types, then there is a new type $A+B$.
(2) If $a: A$, then $\operatorname{inl}(a): A+B$. If $b: B$, then $\operatorname{inr}(b): A+B$.
(3) If $p: A+B$ and $(x: A) \vdash\left(c_{A}: C\right)$ and $(y: B) \vdash\left(c_{B}: C\right)$, then $\operatorname{case}\left(p, c_{A}, c_{B}\right): C$.
(4) case(inl(a), $\left.c_{A}, c_{B}\right)$ computes to c_{A} with a substituted for x. case $\left(\operatorname{inr}(b), c_{A}, c_{B}\right)$ computes to c_{B} with b substituted for y.
(3) If $p: A+B$ and $(x: A) \vdash\left(c_{A}: C\right)$ and $(y: B) \vdash\left(c_{B}: C\right)$, then $\operatorname{case}\left(p, c_{A}, c_{B}\right): C$.

```
switch(p) {
    if p is inl(x):
        do cA with x
    if p is inr(y):
    do cB with y
```

\}
(1) If A and B are types, then there is a new type $A+B$.

- For objects A and B, there is an object $A+B$.
(1) If A and B are types, then there is a new type $A+B$.
- For objects A and B, there is an object $A+B$.
(2) If $a: A$, then $\operatorname{inl}(a): A+B$. If $b: B$, then $\operatorname{inr}(b): A+B$.
- Morphisms inl: $A \rightarrow A+B$ and inr: $B \rightarrow A+B$.
(1) If A and B are types, then there is a new type $A+B$.
- For objects A and B, there is an object $A+B$.
(2) If $a: A$, then $\operatorname{inl}(a): A+B$. If $b: B$, then $\operatorname{inr}(b): A+B$.
- Morphisms inl: $A \rightarrow A+B$ and inr: $B \rightarrow A+B$.
(3) If $p: A+B$ and $(x: A) \vdash\left(c_{A}: C\right)$ and $(y: B) \vdash\left(c_{B}: C\right)$, then $\operatorname{case}\left(p, c_{A}, c_{B}\right): C$.
- Given morphisms $A \rightarrow C$ and $B \rightarrow C$, we have $A+B \rightarrow C$.
(1) If A and B are types, then there is a new type $A+B$.
- For objects A and B, there is an object $A+B$.
(2) If $a: A$, then $\operatorname{inl}(a): A+B$. If $b: B$, then $\operatorname{inr}(b): A+B$.
- Morphisms inl: $A \rightarrow A+B$ and inr: $B \rightarrow A+B$.
(3) If $p: A+B$ and $(x: A) \vdash\left(c_{A}: C\right)$ and $(y: B) \vdash\left(c_{B}: C\right)$, then $\operatorname{case}\left(p, c_{A}, c_{B}\right): C$.
- Given morphisms $A \rightarrow C$ and $B \rightarrow C$, we have $A+B \rightarrow C$.

4 case $\left(\operatorname{inl}(a), c_{A}, c_{B}\right)$ computes to c_{A} with a substituted for x. case $\left(\operatorname{inr}(b), c_{A}, c_{B}\right)$ computes to c_{B} with b substituted for y.

- The following triangles commute:

(1) If A and B are types, then there is a new type $A+B$.
- For objects A and B, there is an object $A+B$.
(2) If $a: A$, then $\operatorname{inl}(a): A+B$. If $b: B$, then $\operatorname{inr}(b): A+B$.
- Morphisms inl: $A \rightarrow A+B$ and inr: $B \rightarrow A+B$.
(3) If $p: A+B$ and $(x: A) \vdash\left(c_{A}: C\right)$ and $(y: B) \vdash\left(c_{B}: C\right)$, then $\operatorname{case}\left(p, c_{A}, c_{B}\right): C$.
- Given morphisms $A \rightarrow C$ and $B \rightarrow C$, we have $A+B \rightarrow C$.

4 case $\left(\operatorname{inl}(a), c_{A}, c_{B}\right)$ computes to c_{A} with a substituted for x. case $\left(\operatorname{inr}(b), c_{A}, c_{B}\right)$ computes to c_{B} with b substituted for y.

- The following triangles commute:

Exactly the (weak) universal property of a coproduct.

Exercise

Define the cartesian product $A \times B$.

Exercise

Define the cartesian product $A \times B$.
(1) If A and B are types, there is a new type $A \times B$.

Exercise

Define the cartesian product $A \times B$.
(1) If A and B are types, there is a new type $A \times B$.
(2) If $a: A$ and $b: B$, then $(a, b): A \times B$.

Exercise

Define the cartesian product $A \times B$.
(1) If A and B are types, there is a new type $A \times B$.
(2) If $a: A$ and $b: B$, then $(a, b): A \times B$.
(3) If $p: A \times B$, then $\operatorname{fst}(p): A$ and $\operatorname{snd}(p): B$.

Exercise

Define the cartesian product $A \times B$.
(1) If A and B are types, there is a new type $A \times B$.
(2) If $a: A$ and $b: B$, then $(a, b): A \times B$.
(3) If $p: A \times B$, then $\operatorname{fst}(p): A$ and $\operatorname{snd}(p): B$.
(4) $\operatorname{fst}(a, b)$ computes to a, and $\operatorname{snd}(a, b)$ computes to b.

Exercise \#2

Exercise

Define the empty type \emptyset.

Exercise
Define the empty type \emptyset.
(1) There is a type \emptyset.

Exercise
Define the empty type \emptyset.
(1) There is a type \emptyset.
(2)

Exercise

Define the empty type \emptyset.
(1) There is a type \emptyset.
(2)
(3) If $p: \emptyset$, then $\operatorname{abort}(p): C$ for any type C.

Exercise

Define the empty type \emptyset.
(1) There is a type \emptyset.
(2)
(3) If $p: \emptyset$, then $\operatorname{abort}(p): C$ for any type C.

4

- A negative type is characterized by eliminations.
- We eliminate a term in some specified way.
- We introduce a term by saying what it does when eliminated.
- Computation follows the instructions of the introduction.
- Examples: function types B^{A}, products $A \times B$
- A positive type is characterized by introductions.
- We introduce a term with specified constructors.
- We eliminate a term by saying how to use each constructor.
- Computation follows the instructions of the elimination.
- Examples: coproducts $A+B$, empty set \emptyset
- A negative type is characterized by eliminations.
- We eliminate a term in some specified way.
- We introduce a term by saying what it does when eliminated.
- Computation follows the instructions of the introduction.
- Examples: function types B^{A}, products $A \times B$
- A positive type is characterized by introductions.
- We introduce a term with specified constructors.
- We eliminate a term by saying how to use each constructor.
- Computation follows the instructions of the elimination.
- Examples: coproducts $A+B$, empty set \emptyset

All universal properties expressible in type theory must be stable under products/pullbacks (i.e. adding unused variables).

Details that I am not mentioning (yet)

- Uniqueness in universal properties
- η-conversion rules
- Function extensionality
- Dependent eliminators
- Some types have both positive and negative versions
- Universe types (unpolarized)
- Eager and lazy evaluation
- Structural rules
- Coherence issues

Some of these will come up later.
(1) Type theory and category theory
(2) Type constructors and universal properties
(3) Type theory and logic
(4) Predicate logic and dependent types
(5) Equality types

Set theory

Logic

$$
\wedge, \vee, \Rightarrow, \neg, \forall, \exists
$$

Sets

$$
\times,+, \rightarrow, \prod, \sum
$$

$x \in A$ is a proposition

Type theory

Types

$$
\times,+, \rightarrow, \Pi, \sum
$$

Logic

$$
\wedge, \vee, \Rightarrow, \neg, \forall, \exists
$$

$x: A$ is a typing judgment

Basic principle

We identify a proposition P with the subsingleton

$$
\{\star \mid P \text { is true }\}
$$

(That is, $\{\star\}$ if P is true, \emptyset if P is false.)

Basic principle

We identify a proposition P with the subsingleton

$$
\{\star \mid P \text { is true }\}
$$

(That is, $\{\star\}$ if P is true, \emptyset if P is false.)

- To prove P is equivalently to exhibit an element of it.

Basic principle

We identify a proposition P with the subsingleton

$$
\{\star \mid P \text { is true }\}
$$

(That is, $\{\star\}$ if P is true, \emptyset if P is false.)

- To prove P is equivalently to exhibit an element of it.
- Proofs are just a particular sort of typing judgment:

$$
\left(x_{1}: P_{1}\right), \ldots,\left(x_{n}: P_{n}\right) \vdash(q: Q)
$$

"Under hypotheses $P_{1}, P_{2}, \ldots, P_{n}$, the conclusion Q is provable."

Basic principle

We identify a proposition P with the subsingleton

$$
\{\star \mid P \text { is true }\}
$$

(That is, $\{\star\}$ if P is true, \emptyset if P is false.)

- To prove P is equivalently to exhibit an element of it.
- Proofs are just a particular sort of typing judgment:

$$
\begin{aligned}
& \left(x_{1}: P_{1}\right), \ldots,\left(x_{n}: P_{n}\right) \vdash(q: Q) \\
& \text { "Under hypotheses } P_{1}, P_{2}, \ldots, P_{n}, \\
& \text { the conclusion } Q \text { is provable." }
\end{aligned}
$$

q is a proof term, which records how each hypothesis was used.

Restricted to subsingletons, the rules of type theory tell us how to construct valid proofs. This includes:
(1) How to construct new propositions.
(2) How to prove such propositions.
(3) How to use such propositions to prove other propositions.

4 (Computation rules are less meaningful for subsingletons.)

$$
\text { Types } \longleftrightarrow \text { Propositions }
$$

Function types, acting on subsingletons, become implication.
(1) If P and Q are propositions, then so is $P \Rightarrow Q$.
(2) If assuming P, we can prove Q, then we can prove $P \Rightarrow Q$.
(3) If we can prove P and $P \Rightarrow Q$, then we can prove Q.

Cartesian products, acting on subsingletons, become conjunction.
(1) If P and Q are propositions, so is " P and Q ".
(2) If P is true and Q is true, then so is " P and Q ".
(3) If " P and Q " is true, then P is true.

If " P and Q " is true, then Q is true.

The proof term

$$
(f: P \Rightarrow(Q \text { and } R)) \vdash(\lambda x . \mathrm{fst}(f(x)): P \Rightarrow Q)
$$

encodes the following informal proof:

Theorem

If P implies Q and R, then P implies Q.

Proof.

- Suppose P.
- Then, by assumption, Q and R.
- Hence Q.
- Therefore, P implies Q.

The proof term

$$
(f: P \Rightarrow(Q \text { and } R)) \vdash(\lambda x . \mathrm{fst}(f(x)): P \Rightarrow Q)
$$

encodes the following informal proof:

Theorem

If P implies Q and R, then P implies Q.

Proof.

- Suppose P.
- Then, by assumption, Q and R.
- Hence Q.
- Therefore, P implies Q.

The proof term

$$
(f: P \Rightarrow(Q \text { and } R)) \vdash(\lambda x . \mathrm{fst}(f(x)): P \Rightarrow Q)
$$

encodes the following informal proof:

Theorem

If P implies Q and R, then P implies Q.

Proof.

- Suppose P.
- Then, by assumption, Q and R.
- Hence Q.
- Therefore, P implies Q.

The proof term

$$
(f: P \Rightarrow(Q \text { and } R)) \vdash(\lambda x \cdot \mathrm{fst}(f(x)): P \Rightarrow Q)
$$

encodes the following informal proof:

Theorem

If P implies Q and R, then P implies Q.

Proof.

- Suppose P.
- Then, by assumption, Q and R.
- Hence Q.
- Therefore, P implies Q.

The proof term

$$
(f: P \Rightarrow(Q \text { and } R)) \vdash(\lambda x \cdot \mathrm{fst}(f(x)): P \Rightarrow Q)
$$

encodes the following informal proof:

Theorem

If P implies Q and R, then P implies Q.

Proof.

- Suppose P.
- Then, by assumption, Q and R.
- Hence Q.
- Therefore, P implies Q.

The proof term

$$
(f: P \Rightarrow(Q \text { and } R)) \vdash(\lambda x \cdot \mathrm{fst}(f(x)): P \Rightarrow Q)
$$

encodes the following informal proof:

Theorem

If P implies Q and R, then P implies Q.

Proof.

- Suppose P.
- Then, by assumption, Q and R.
- Hence Q.
- Therefore, P implies Q.

The proof term

$$
(f: P \Rightarrow(Q \text { and } R)) \vdash(\lambda x \cdot \mathrm{fst}(f(x)): P \Rightarrow Q)
$$

encodes the following informal proof:

Theorem

If P implies Q and R, then P implies Q.

Proof.

- Suppose P.
- Then, by assumption, Q and R.
- Hence Q.
- Therefore, P implies Q.

This is how type-checking a program can verify a proof.

Subterminal objects

What does logic look like in a category?

What does logic look like in a category?

Definition

An object P is subterminal if for any object X, there is at most one arrow $X \rightarrow P$.

These are the "truth values" for the "internal logic".

What does logic look like in a category?

Definition

An object P is subterminal if for any object X, there is at most one arrow $X \rightarrow P$.

These are the "truth values" for the "internal logic".

Examples

- In Set: \emptyset (false) and 1 (true).

What does logic look like in a category?

Definition

An object P is subterminal if for any object X, there is at most one arrow $X \rightarrow P$.

These are the "truth values" for the "internal logic".

Examples

- In Set: \emptyset (false) and 1 (true).
- In Set ${ }^{\rightarrow}$: false, true, and "in between".

What does logic look like in a category?

Definition

An object P is subterminal if for any object X, there is at most one arrow $X \rightarrow P$.

These are the "truth values" for the "internal logic".

Examples

- In Set: \emptyset (false) and 1 (true).
- In Set ${ }^{\rightarrow}$: false, true, and "in between".
- In Set ${ }^{D}$: cosieves in D.

What does logic look like in a category?

Definition

An object P is subterminal if for any object X, there is at most one arrow $X \rightarrow P$.

These are the "truth values" for the "internal logic".

Examples

- In Set: \emptyset (false) and 1 (true).
- In Set ${ }^{\rightarrow}$: false, true, and "in between".
- In Set ${ }^{D}$: cosieves in D.
- $\operatorname{In} \operatorname{Sh}(X)$: open subsets of X.

Problem

Not all operations preserve subsingletons.

- $A \times B$ is a subsingleton if A and B are
- B^{A} is a subsingleton if A and B are

But:

- $A+B$ is not generally a subsingleton, even if A and B are.

Problem

Not all operations preserve subsingletons.

- $A \times B$ is a subsingleton if A and B are
- B^{A} is a subsingleton if A and B are

But:

- $A+B$ is not generally a subsingleton, even if A and B are.

Solution

The support of A is a "reflection" of A into subsingletons.
Thus " P or Q " means the support of $P+Q$.
I'll explain the type constructor that does this on Friday.

Intuitionistic logic

We define the negation of P by

$$
\neg P:=(P \Rightarrow \perp) .
$$

Intuitionistic logic

We define the negation of P by

$$
\neg P:=(P \Rightarrow \perp) .
$$

There is no way to prove " P or $(\neg P)$ ".

We define the negation of P by

$$
\neg P:=(P \Rightarrow \perp) .
$$

There is no way to prove " P or $(\neg P)$ ".
What we have is called intuitionistic or constructive logic.
By itself, it is weaker than classical logic. But...
(1) Many things are still true, when phrased correctly.
(2) It is easy to add " P or $(\neg P)$ " as an axiom.
(3) A weaker logic means a wider validity (in more categories).

We define the negation of P by

$$
\neg P:=(P \Rightarrow \perp) .
$$

There is no way to prove " P or $(\neg P)$ ".
What we have is called intuitionistic or constructive logic.
By itself, it is weaker than classical logic. But. . .
(1) Many things are still true, when phrased correctly.
(2) It is easy to add " P or $(\neg P)$ " as an axiom.
(3) A weaker logic means a wider validity (in more categories).

Examples

- Set D has classical logic $\Longleftrightarrow D$ is a groupoid.
- $\mathbf{S h}(X)$ has classical logic \Longleftrightarrow every open set in X is closed.

Exercise

Write a program that proves $\neg \neg(A$ or $\neg A)$.

Other ways to interpret logic in type theory:

- Don't require "proposition types" to be subsingletons.
- Keep propositions as a separate "sort" from types.
(1) Type theory and category theory
(2) Type constructors and universal properties
(3) Type theory and logic
(4) Predicate logic and dependent types
(5) Equality types

For logic we need more than connectives
"and", "or", "implies", "not"
we need quantifiers:
"for all $x \in X$ ", "there exists an $x \in X$ such that"

For logic we need more than connectives
"and", "or", "implies", "not"
we need quantifiers:
"for all $x \in X$ ", "there exists an $x \in X$ such that"

First question

Before forming "there exists an $x \in X$ such that $P(x)$ ", we need a notion of predicate: a "function" P from X to propositions.

If propositions are subsingleton types, then predicates must be dependent types: types that vary over some other type.

A dependent type judgment

$$
(x: A) \vdash(B(x): \text { Type })
$$

means that for any particular x : A, we have a type $B(x)$. If each $B(x)$ is a subsingleton, then this is a predicate.

Examples of dependent types

$$
(y: \text { Year }),(m: \text { Month }) \vdash(\operatorname{Day}(y, m): \text { Type })
$$

Examples of dependent types

$$
\begin{gathered}
(y: \text { Year }),(m: \text { Month }) \vdash(\operatorname{Day}(y, m): \text { Type }) \\
(x: \mathbb{N}) \vdash(\operatorname{Multiples}(x): \text { Type })
\end{gathered}
$$

$$
\begin{aligned}
& (y: \text { Year }),(m: \text { Month }) \vdash(\operatorname{Day}(y, m): \text { Type }) \\
& (x: \mathbb{N}) \vdash(\operatorname{Multiples}(x): \text { Type }) \\
& (x: \mathbb{N}) \vdash((x=0): \text { Type })
\end{aligned}
$$

$$
\begin{aligned}
& (y: \text { Year }),(m: \text { Month }) \vdash(\operatorname{Day}(y, m): \text { Type }) \\
& (x: \mathbb{N}) \vdash(\operatorname{Multiples}(x): \text { Type }) \\
& (x: \mathbb{N}) \vdash((x=0): \text { Type }) \\
& (x: A),(y: A) \vdash((x=y): \text { Type })
\end{aligned}
$$

$$
\begin{gathered}
(y: \text { Year }),(m: \operatorname{Month}) \vdash(\operatorname{Day}(y, m): \text { Type }) \\
(x: \mathbb{N}) \vdash(\operatorname{Multiples}(x): \text { Type }) \\
(x: \mathbb{N}) \vdash((x=0): \text { Type }) \\
(x: A),(y: A) \vdash((x=y): \text { Type }) \\
(n: \mathbb{N}),(x: \mathbb{N}),(y: \mathbb{N}),(z: \mathbb{N}) \vdash\left(\left(x^{n}+y^{n}=z^{n}\right): \text { Type }\right)
\end{gathered}
$$

The syntax

$$
(x: A) \vdash(B(x): \text { Type })
$$

looks like there is a type called "Type" that $B(x)$ is an element of!
This is called a universe type: its elements are types.

The syntax

$$
(x: A) \vdash(B(x): \text { Type })
$$

looks like there is a type called "Type" that $B(x)$ is an element of!
This is called a universe type: its elements are types.

- Can apply λ-abstraction:

$$
\lambda x \cdot B(x): \text { Type }^{A}
$$

The syntax

$$
(x: A) \vdash(B(x): \text { Type })
$$

looks like there is a type called "Type" that $B(x)$ is an element of!
This is called a universe type: its elements are types.

- Can apply λ-abstraction:

$$
\lambda x \cdot B(x): \text { Type }^{A}
$$

- "Type: Type" leads to paradoxes, but we can have a hierarchy

$$
\text { Type }_{0}: \text { Type }_{1}: \text { Type }_{2}: \cdots
$$

Dependent types in categories

In category theory, a dependent type " $(x: A) \vdash(B(x):$ Type)" is:
(1) A map $B \rightarrow A$, where $B(x)$ is the fiber over x : A; OR
(2) A map $A \rightarrow$ Type, where Type is a universe object.

In category theory, a dependent type " $(x: A) \vdash(B(x):$ Type)" is:
(1) A map $B \rightarrow A$, where $B(x)$ is the fiber over x : A; OR
(2) A map $A \rightarrow$ Type, where Type is a universe object.

The two are related by a pullback:

(Type is the classifying space of dependent types).

In category theory, a dependent type " $(x: A) \vdash(B(x):$ Type)" is:
(1) A map $B \rightarrow A$, where $B(x)$ is the fiber over x : A; OR
(2) A map $A \rightarrow$ Type, where Type is a universe object.

The two are related by a pullback:

(Type is the classifying space of dependent types).

- B is a predicate if $B \rightarrow A$ is monic.

A proof of " $\forall x$: $A, P(x)$ " assigns, to each a: A, a proof of $P(a)$. In general, we have the dependent product:
(1) If $(x: A) \vdash(B(x):$ Type $)$, there is a type $\prod_{x: A} B(x)$.
(2) If $(x: A) \vdash(b: B(x))$, then $\lambda x . b: \prod_{x: A} B(x)$.
(3) If $a: A$ and $f: \prod_{x: A} B(x)$, then $f(a): B(a)$.

4 $(\lambda x . b)(a)$ computes to to b with a substituted for x.

A proof of " $\forall x$: $A, P(x)$ " assigns, to each a: A, a proof of $P(a)$. In general, we have the dependent product:
(1) If $(x: A) \vdash(B(x):$ Type $)$, there is a type $\prod_{x: A} B(x)$.
(2) If $(x: A) \vdash(b: B(x))$, then $\lambda x \cdot b: \prod_{x: A} B(x)$.
(3) If $a: A$ and $f: \prod_{x: A} B(x)$, then $f(a): B(a)$.
(4) $(\lambda x . b)(a)$ computes to to b with a substituted for x.
f is a dependently typed function: its output type (not just its output value) depends on its input value.

- Alternatively: an A-tuple $\left(f_{a}\right)_{a: ~} A$ with $f_{a} \in B(a)$.

A proof of " $\forall x$: $A, P(x)$ " assigns, to each a: A, a proof of $P(a)$. In general, we have the dependent product:
(1) If $(x: A) \vdash(B(x):$ Type $)$, there is a type $\prod_{x: A} B(x)$.
(2) If $(x: A) \vdash(b: B(x))$, then $\lambda x \cdot b: \prod_{x: A} B(x)$.
(3) If $a: A$ and $f: \prod_{x: A} B(x)$, then $f(a): B(a)$.
(4) $(\lambda x . b)(a)$ computes to to b with a substituted for x.
f is a dependently typed function: its output type (not just its output value) depends on its input value.

- Alternatively: an A-tuple $\left(f_{a}\right)_{a: ~} A$ with $f_{a} \in B(a)$.

Remark

If $B(x)$ is independent of x, then $\prod_{x: A} B(x)$ is just B^{A}.

A proof of " $\exists x: A, P(x)$ " consists of $a: A$, and a proof of $P(a)$. In general, we have the dependent sum:
(1) If $(x: A) \vdash(B(x):$ Type $)$, there is a type $\sum_{x: A} B(x)$.
(2) If $a: A$ and $b: B(a)$, then $(a, b): \sum_{x: A} B(x)$.
(3) If $p: \sum_{x: A} B(x)$, then $\mathrm{fst}(p): A$ and $\operatorname{snd}(p): B(f s t(p))$.
(4) fst (a, b) computes to a and $\operatorname{snd}(a, b)$ computes to b.

A proof of " $\exists x: A, P(x)$ " consists of $a: A$, and a proof of $P(a)$. In general, we have the dependent sum:
(1) If $(x: A) \vdash(B(x):$ Type $)$, there is a type $\sum_{x: A} B(x)$.
(2) If $a: A$ and $b: B(a)$, then $(a, b): \sum_{x: A} B(x)$.
(3) If $p: \sum_{x: A} B(x)$, then $\mathrm{fst}(p): A$ and $\operatorname{snd}(p): B(f s t(p))$.
(4) fst (a, b) computes to a and $\operatorname{snd}(a, b)$ computes to b.
$\sum_{x: A} B(x)$ is like the disjoint union of $B(x)$ over all $x: A$.

A proof of " $\exists x: A, P(x)$ " consists of $a: A$, and a proof of $P(a)$. In general, we have the dependent sum:
(1) If $(x: A) \vdash(B(x):$ Type $)$, there is a type $\sum_{x: A} B(x)$.
(2) If $a: A$ and $b: B(a)$, then $(a, b): \sum_{x: A} B(x)$.
(3) If $p: \sum_{x: A} B(x)$, then $\mathrm{fst}(p): A$ and $\operatorname{snd}(p): B(f s t(p))$.
(4) fst (a, b) computes to a and $\operatorname{snd}(a, b)$ computes to b.
$\sum_{x: A} B(x)$ is like the disjoint union of $B(x)$ over all $x: A$.

Remark

If $B(x)$ is independent of x, then $\sum_{x: A} B(x)$ reduces to $A \times B$.

Types	\longleftrightarrow Propositions
$\prod_{x: A} B(x)$	\longleftrightarrow
$\sum_{x: A} B(x)$	$\longleftrightarrow x: A, P(x)$
	$\exists x: A, P(x)$

Remarks

- $\prod_{x: ~}{ }_{A} B(x)$ is a subsingleton if each $B(x)$ is.
- $\sum_{x: A} B(x)$ is not, so we use its support, as with "or".

Types \longleftrightarrow Propositions

$$
\begin{aligned}
& \prod_{x: A} B(x) \longleftrightarrow \forall x: A, P(x) \\
& \sum_{x: A} B(x) \longleftrightarrow \exists x: A, P(x)
\end{aligned}
$$

Remarks

- $\prod_{x: ~}^{A} B(x)$ is a subsingleton if each $B(x)$ is.
- $\sum_{x: A} B(x)$ is not, so we use its support, as with "or".
- If B is a subsingleton, $\sum_{x: A} B(x)$ is " $\{x: A \mid B(x)\}$ ".
- Pullback of a dependent type "(y:B) $\vdash(P(y)$: Type)" along $f: A \rightarrow B$:

is substitution, yielding " $(x: A) \vdash(P(f(x))$: Type $)$ ".
- Pullback of a dependent type " $(y: B) \vdash(P(y)$: Type)" along $f: A \rightarrow B$:

is substitution, yielding " $(x: A) \vdash(P(f(x))$: Type)".
- Dependent sum is its left adjoint (composition with f).
- Dependent product is its right adjoint (in an I.c.c.c).
- Pullback of a dependent type " $(y: B) \vdash(P(y)$: Type)" along $f: A \rightarrow B$:

is substitution, yielding " $(x: A) \vdash(P(f(x))$: Type $)$ ".
- Dependent sum is its left adjoint (composition with f).
- Dependent product is its right adjoint (in an I.c.c.c).

$$
\exists_{f} \dashv f^{*} \dashv \forall_{f}
$$

(an insight due originally to Lawvere)
(1) Type theory and category theory
(2) Type constructors and universal properties
(3) Type theory and logic
(4) Predicate logic and dependent types
(5) Equality types

To formalize mathematics, we need to talk about equality.

$$
(x: A),(y: A) \vdash((x=y): \text { Type })
$$

To formalize mathematics, we need to talk about equality.

$$
(x: A),(y: A) \vdash((x=y): \text { Type })
$$

Categorically, this will be a map

To formalize mathematics, we need to talk about equality.

$$
(x: A),(y: A) \vdash((x=y): \text { Type })
$$

Categorically, this will be a map

Thinking about fibers leads us to conclude that
Eq_{A} should be represented by the diagonal $A \rightarrow A \times A$.

Equality is just another (positive) type constructor.
(1) For any type A and $a: A$ and $b: A$, there is a type $(a=b)$.

Equality is just another (positive) type constructor.
(1) For any type A and $a: A$ and $b: A$, there is a type $(a=b)$.
(2) For any a : A, we have refl $a_{a}:(a=a)$.

Equality is just another (positive) type constructor.
(1) For any type A and $a: A$ and $b: A$, there is a type $(a=b)$.
(2) For any a : A, we have refl $a:(a=a)$.

3

$$
\begin{array}{llll}
(x: A),(y: A),(p:(x=y)) & \vdash & (C(x, y, p) & : \text { Type }) \\
(x: A) & \vdash & (d(x) & \left.: C\left(x, x, \operatorname{refl}_{x}\right)\right) \\
\hline(x: A),(y: A),(p:(x=y)) & \vdash & (J(d ; x, y, p) & : C(x, y, p)) .
\end{array}
$$

Equality is just another (positive) type constructor.
(1) For any type A and $a: A$ and $b: A$, there is a type $(a=b)$.
(2) For any a : A, we have refla $:(a=a)$.

3

$$
\begin{array}{llll}
(x: A),(y: A),(p:(x=y)) & \vdash & (C(x, y, p) & : \text { Type }) \\
(x: A) & \vdash & (d(x) & \left.: C\left(x, x, \operatorname{refl}_{x}\right)\right) \\
\hline(x: A),(y: A),(p:(x=y)) & \vdash & (J(d ; x, y, p) & : C(x, y, p)) .
\end{array}
$$

4. $J\left(d ; a, a\right.$, refl $\left._{a}\right)$ computes to $d(a)$.
(On Friday: a general framework which produces these rules.)

Homotopical equality

Two Big Important Facts

(1) The rules do not imply that $(x=y)$ is a subsingleton!

Two Big Important Facts

(1) The rules do not imply that $(x=y)$ is a subsingleton!
(2) Diagonals $A \rightarrow A \times A$ in higher categories are not monic!

Two Big Important Facts

(1) The rules do not imply that $(x=y)$ is a subsingleton!
(2) Diagonals $A \rightarrow A \times A$ in higher categories are not monic!

Conclusions

- Types naturally form a higher category.
- Type theory naturally has models in higher categories.

Two Big Important Facts

(1) The rules do not imply that $(x=y)$ is a subsingleton!
(2) Diagonals $A \rightarrow A \times A$ in higher categories are not monic!

Conclusions

- Types naturally form a higher category.
- Type theory naturally has models in higher categories.

