e Type theory consists of rules for deriving typing judgments:

Homotopy theory in type theory (x1: A1), (2t A2), .., (X2 Ap) E (b: B)

e The rules come in “packages” called type constructors.

Michael Shulman e Each type constructor has four groups of rules: formation,
introduction, elimination, and computation.
e Categorically: types are objects, terms are morphisms.

11 April 2012 e Each type constructor corresponds to a categorical universal

property.

Dependent eliminators Dependent eliminators

When we introduce predicates and dependent types, the

eliminators of other types need to be generalized. Before

Suppose A, B, and C are types.

If (x: A) F (ca:C)and (y: B) - (cg: (),
e Suppose (z: A+ B) F (P(z): Type) is a predicate on A+ B. then for p: A+ B we have case(p, ca, cg) : C.
e We should be able to prove P by cases.

Example

@ Prove (x: A) F (pa: P(inl(x))). After
® Prove (y: B) - (ps: P(inr(y))). Suppose A and B are types, and
© Conclude (z: A+ B) F (case(z; pa, pg): P(2)). (z: A+ B) + (C(2) : Type)
e This looks like the “case split” eliminator for A+ B, but the _
output type P(z) depends on the element z that we are is a dependent type.
case-analyzing. If (x: A) F (ca: C(inl(x))) and (y: B) + (cg: C(inr(y))),

then for p: A+ B we have case(p, ca, cg) : C(p).
Therefore: we strengthen the elimination rules.



Dependent eliminators in categories Dependent eliminators imply uniqueness

Theorem
Suppose f,g: CAB and that
e forall a: A, we have f(inl(a)) = g(inl(a)), and
e for all b: B, we have f(inr(b)) = g(inr(b)).
Then for all z: A+ B, we have f(z) = g(z).

Proof.
Consider the dependent type

(z: A+ B) F (f(z) = g(2) : Type)

By the dependent eliminator for A + B, to construct a term of this
type, it suffices to construct terms

(a: A) F (ea: f(inl(a)) = g(inl(a)))
(b: B)  (eg: f(inr(b)) = g(inr(b))) O

Function extensionality Equality types

Equality types (or identity types) are a “positive type”
(determined by the introduction rule):
@ For any type A and a: A and b: A, there is a type (a = b).
@® For any a: A, we have refl, : (a = a).
® Suppose C(x,y, p) is a type dependent on three variables

. RA . _ —_
(f,g. B ) - (funext : (Hx: alf(x) = g(x))) —(f= g)) x,y: Aand p: (x = y). Suppose moreover that for any x: A
we have an element d(x) : C(x, x, refly). Then for any x,y, p
we have an element J(d; x,y,p) : C(x,y, p).

© J(d; a, a, refl,) computes to d(a).

It's more difficult to give a dependent eliminator for function types.
Instead, we assert function extensionality directly as an axiom.

Remarks

e Today I'll use both BA and A — B for the function type.

e Later: more homotopical versions of both kinds of uniqueness. Informally, @ says

Elimination on equality

In order to do something with an arbitrary p: (x = y),
it suffices to consider the case of refl, : (x = x).



Equality is symmetric

Theorem

Suppose p: (x =y). Then p~1: (y = x).

Proof.
By elimination, we may assume that p is refl, : (x = x). But in
this case, we can take p~! to also be refl, : (x = x). O

Just as in the cases of the dependent eliminator for coproducts, the
desired conclusion C(z) becomes C(inl(a)) and C(inr(b)), when
we eliminate p the desired conclusion (y = x) becomes (x = x).

We treat types as spaces/oo-groupoids/homotopy types, and we
think of terms p: (x = y) as paths x ~ y.

o Reflexivity becomes the constant path refl,: x ~ x.

e Transitivity becomes concatenation x P zof x4 1% Lz,
-1

e Symmetry becomes reversal y P x of x % y.

But now there is more to say.

¢ Concatenation is associative: ap g : ((p*q)*r = px(qx*r)).

Equality is transitive

Theorem

Suppose p: (x =y) and q: (y = z). Then pxq: (x = z).

Proof.
By elimination, we may assume that p is refl, : (x = x). But in this
case, we have g: (x = z), so we can take p x g to be just g. Ol

We could equally well have eliminated g, or both p and q.

The “associator” «ap g, is coherent:

% q) x (rxs)

((pxq)*r)x*s \

é p*(qx*(rxs))

(px(qxr))xs /
s
p*(

(g*r)x*s)

ig

..or more precisely, there is a path between those two
concatenations. . .
.. which then has to be coherent. ..



Theorem (Lusmdaine,Garner—van den Berg)

The terms belonging to the iterated identity types of any type A

\ Given f: A— B, x,y: A, and a path p: (x = y), we have an
form an co-groupoid.

image path
map(f, p) : (f(x) = f(y))

h t t th
H(?chmotopy omotopy (type theory) t:ype defined by eliminating on p:
eor eor
Y Y o If pis refly, then map(f, p) = refle(x).-

Note: Uses Batanin-Leinster co-groupoids (can also be done with
simplicial versions).

Transporting along paths Paths for type constructors

For any type built using a type constructor, we can characterize its

Given x,y: A, p: (x =y), and B dependent on A, we have the paths in terms of paths in its input types.

operation of transporting along p Example (Cartesian products)

trans(p, —) : B(x) = B(y). e From p: (a1 = a2) and q: (by = b»), we can build
defined by eliminating on p: (p,q) : (a1, b1) = (a2, b))

e If pis refly, then trans(p, —) is the identity map of B(x).
Interpretation e Given z1,z2: AX B and r: (z1 = z2), we have
We should view the map B — A as a fibration.

(In an (oo, 1)-category, we can treat any map as a fibration.) map(fst, r) : (fst(z1) = fst(z2))

map(snd, r) : (snd(z1) = snd(z2))



Paths in dependent sums Paths in dependent sums

] Ex: A B(X)
Suppose a1,a2: A and by: B(a1) and by: B(az). A path by
(al7b1) - (327b2) / q
. t b

in > .. 4 B(x) should consist of by rans(p. by)

e A path p: (a1 = ap) in A, and. .. I

e what? p

e The expression (by = by) is ill-formed, since by and b, have a 2 A

different types.
e Instead we can use q: (trans(p, by) = bo).

e In a fibration, we can lift the path p starting at b;.
e We choose one lift and call its endpoint trans(p, b1).

e Any other lift of p is determined by a path in the fiber B(ay).

Subsingletons in homotopy theory

h-Propositions

Recall that logic is type theory restricted to subsingletons. Definition
A type P is a proposition (or h-proposition or h-prop) if we have

In homotopy type theory, we interpret “subsingleton”

homotopically: (x: P),(y: P) F (p:(x=1y))
Theorem
For an object P in an (oo, 1)-category with products, TFAE: p
@ Each space Hom(X, P) is empty or contractible. J
® Any two morphisms X = P are homotopic. "\
© The diagonal P — P x P has a section. \
PxP

® The diagonal P — P x P is an equivalence.

These are the “subsingletons” of homotopy type theory.



Building h-props Internalizing h-props

What ways do we have to obtain h-props? How can we say in type theory “A is an h-prop"?

e Most type constructors preserve h-props.

For others (+ and >), we intend to apply “support”. isProp(A) = supp H H (x=y) ?
x:A y: A

(x = y) is not generally an h-prop, but has a support:

e (x = y) is the type of paths from x to y.
e supp(x = y) is the assertion: there exists a path from x to y.

For some types A, all equalities (x = y) are h-props.

e These are called sets or h-sets.
e Certain types are always sets (e.g. N, on Friday).

But can we say anything homotopy-theoretic with this logic?

Internalizing h-props Internalizing h-props

Theorem

For any A, isProp(isProp(A)).
How can we say in type theory “Ais an h-prop"? Y P P(4)

Proof.
isProp(A) = H H (x=y) ! e Suppose H, K: isProp(A); we want (H = K).
A YA e By funext, suffices to show H(x,y) = K(x,y) for all x, y: A.
This is already an h-prop! e Now map(K(x,—), H(x,y)) is a path in >__(x = z) from
K(x, x) to K(x,y). In particular, it contains a path

Theorem

For any A, we can construct a term in trans(H(x, y), K(x,x)) = K(x, y)

isProp(isProp(A)). e Hence H(x,y) * K(x,x) = K(x,y) (a fact).

It suffices to prove K(x, x) = refly.

e The above argument with H being K, and y being x, yields
K(x,x) * K(x,x) = K(x, x).
e Now cancel K(x, x) (i.e. concatenate with K(x, x)~1). O



Some subtleties Some subtleties

e We can loosely read [], . 4 Hy: A (x=y)as

“for all x,y: A, we have a path (x = y)" e Type theory is a formal system.

e We can and do (and must, in practice) use informal language
e But “for all x,y: A, there exists a path (x = y)" should be to speak and think about it.

read to mean e This depends on certain conventions about the formal

H H supp(x = y) interpretation given to informal words, which are sometimes
x: Ay A subtly different to those used for some other formal system
This asserts that “if A is nonempty, then it is connected.” (like set theory).

e Fortunately, we have a computer proof assistant to type-check

e In _ . 2 (x =y), the assigned path (x = y) must .
[L: 4 Hy' Al Y) & path ( Y) our proofs and guarantee that we didn't screw up!

depend continuously on x and y. This can be confusing until
you get used to this meaning of “for all”.

Homotopy equivalences Back to bijections

Definition
A function f: A — B is a homotopy equivalence if there exists A function f: A — B between sets is a bijection if
8 (5 = /4 lne (emisieplEs g @ a2 felg eme) 1 02 o el @ There exists g: B — A such that go f = ids and fog = idg.
® OR: For each b € B, the set f~1(b) is a singleton.
® OR: There exists g: B — A such that g o f =id4 and also
isHtpyEquiv(f) := supp Z ((g of =ida) x (fog = idB)> h: B — Asuch that f o h = idg.

g: B—A

This would not be an h-prop without supp. Can we avoid it?



Voevodsky equivalences

Definitions
The homotopy fiber of f: A — B at b: B is

hfiber(f, b) ==

A type X is contractible if it is an inhabited h-prop:

isContr(X) = isProp(X) x X

Definition (Voevodsky)

f is an equivalence if each hfiber(f, b) is contractible:

isEquiv(f) = H isContr(hfiber(f, b))
b: B

This is an h-prop.

Adjoint equivalences

Given a homotopy equivalence, we can also ask for more coherence
fromr: (gof =ida) and s: (f o g =idp).

(1a) For all b: B, we have u(b): (r(g(b)) = map(g,s(b))).
(1b) For all a: A, we have v(a): (map(f,r(a)) = s(f(a))).
(2a) For all b: B, we have ...v(g(b) ..
(2b)

.map(g, u(b)) ..
2b) For all a: A, we have ... u(f(a) ... ) ..

map(f, v(a)

This gives an h-prop if we stop between any (na) and (nb)
(and then the rest can be constructed).

Definition
f is an adjoint equivalence if we have g, r, s, and u.

=32, X Z ( (g(b)) —map(g,S(b))>

g:B—A r: ...

isAdjEquiv(f

Definition (Joyal)

f: A— B is an h-isomorphism if we have g: B — A and a
homotopy g o f ~ ida, and also h: B — A and a homotopy
foh~idg.

isHIso(f) =

Z (gof =idy) x( Z (foh=idg)

g: B—A h: B—A

This is also an h-prop.

All equivalences are the same

Theorem

The following are equivalent:
@ f is a homotopy equivalence.
@ f is a (Voevodsky) equivalence.
© f is a (Joyal) h-isomorphism.

O f is an adjoint equivalence.
The last three are supp-free h-props, so we have equivalences
isEquiv(f) ~ isHlso(f) ~ isAdjEquiv(f)

Definition

The type of equivalences between A, B: Type is

Z isEquiv(f).

f: A—»B

Equiv(A, B) ==

)



The short five lemma

hfiber(f) —— A —'—

B
| : Jt
hfiber(g) —— C ——D

Theorem
e /fs and t are equivalences, so is r.

e /fr and t are equivalences, so is s.

This is a theorem in type theory: A, B, C, D are types and we
have a proof term

(p1: isEquiv(s)), (p2: isEquiv(t))  (q: isEquiv(r))

Homotopical uniqueness

Theorem
For any types A, B, C, the map

Af.(Aa.f(inl(a)), Ab.f(inr(b))) : CA*E - Cc*Ax CP
is an equivalence (using the dependent eliminator).

The type CATB — CA x CB should be more consistently
(but less legibly) written:

(CAx CBY™ or ((A+B)—=C) = (A= C)x(B— ()

Awodey—Gambino—Sojakova have proven a much more general
version of this, in the context we'll discuss on Friday.

The 3 x 3 lemma

hfiber(h) —— hfiber(k)
hfiber(f) l\ f /L
]
hfiber(g) C D

Theorem

There is an equivalence hfiber(r) ~ hfiber(s).

(Also a theorem in type theory.)

Homotopical function extensionality

For f,g: BA, there is a term

happly ((f =g) = [[(f(a) = g(é)))
a: A

defined by identity elimination:

happly(refls) = Aa.refl¢ 4

Theorem (Voevodsky)

happly is an equivalence (using the naive funext).

Also works for dependent functions.



Paths in the universe

The only type whose path-types we have not determined (up to
equivalence, in terms of other path-spaces) is the universe “Type".

B —— Type
A—— Type

If Type is the “classifying space” of types, then a path in Type
should be an equivalence of types.

The meaning of univalence

The meaning of univalence
Given an equivalence f: A = B, we can identify A with B along f.

In other words:

e When talking about A, B, and f, we "may as well assume”
that Bis A, and f is 14.

e Or: equivalent types can be treated as identical.

Proof.
Use the inverse of pathToEquiv, then the eliminator of equality. [

This is something we do informally all the time in mathematics.
The univalence axiom gives it a precise formal expression.

The univalence axiom

For A, B: Type, we have
pathToEquivy g : ((A = B) — Equiv(A, B))

defined by identity elimination.
Note: (A = B) is a path-type of “Type".

The Univalence Axiom (Voevodsky)

For all A, B, the function pathToEquiv, g is an equivalence.

H H isEquiv(pathToEquiv, g)
A: Type B: Type

In particular, every equivalence yields a path between types.

The uses of univalence

@ The homotopy theory is nontrivial (Type is not an h-set).
® (Voevodsky) Univalence implies funext.
© For any type F, the type

Z supp(A = F)
A: Type

is the classifying space for bundles with fiber F.
@ Computing homotopy groups! (on Friday)
® Many more ...



