Categorical models of homotopy type theory

Michael Shulman

12 April 2012

Homotopy type theory in higher categories

Recall:

homotopy type theory	$\longleftrightarrow(\infty, 1)$-categories
$\times,+$ types	\longleftrightarrow
products, coproducts	
equality types $(x=y)$	\longleftrightarrow diagonals
\prod types	\longleftrightarrow local cartesian closure
univalent universe Type	\longleftrightarrow object classifier

Two kinds of equality

Problem

Type theory is stricter than $(\infty, 1)$-categories.
In type theory, we have two kinds of "equality":
(1) Equality witnessed by inhabitants of equality types (= paths).
(2) Computational equality: $(\lambda x . b)(a)$ evaluates to $b[a / x]$.

These play different roles: type checking depends on computational equality.

- if a evaluates to b, and $c: C(a)$, then also $c: C(b)$.
- In particular, if a evaluates to b, then $\operatorname{refl}_{b}:(a=b)$.
- if $p:(a=b)$ and $c: C(a)$, then only transport $(p, c): C(b)$.

Two kinds of equality

But computational equality is also stricter.

Example

Composition is computationally strictly associative.

$$
\begin{aligned}
g \circ f & =\lambda x \cdot g(f(x)) \\
h \circ(g \circ f) & =\lambda x \cdot h((\lambda x \cdot g(f(x)))(x)) \rightsquigarrow \lambda x \cdot h(g(f(x))) \\
(h \circ g) \circ f & =\lambda x \cdot(\lambda y \cdot h(g(y)))(f(x)) \rightsquigarrow \lambda x \cdot h(g(f(x)))
\end{aligned}
$$

- This is the sort of issue that homotopy theorists are intimately familiar with!
- We need a model for ($\infty, 1$)-categories with (at least) a strictly associative composition law.

Display map categories

Forget everything you know about homotopy theory; let's see how the type theorists come at it.

Definition

A display map category is a category with

- A terminal object.
- A subclass of its morphisms called the display maps, denoted $P \rightarrow A$ or $P \rightarrow A$.
- Any pullback of a display map exists and is a display map.
- A display map $P \rightarrow A$ is a type dependent on A.
- A display map $A \rightarrow 1$ is a plain type (dependent on nothing).
- Pullback is substitution.

Dependent sums of display maps

$$
(x: A) \vdash(B(x): \text { Type })
$$

If the types $B(x)$ are the fibers of $B \rightarrow A$, their dependent sum $\sum_{x: A} B(x)$ should be the object B.

$$
\begin{aligned}
& (x: A) \vdash(B(x): \text { Type }) \\
& \vdash\left(\sum_{x: A} B(x): \text { Type }\right)
\end{aligned}
$$

Dependent sums in context

More generally:

$$
(x: A),(y: B(x)) \vdash(C(x, y): \text { Type })
$$

$$
(x: A) \vdash\left(\sum_{y: B(x)} C(x, y): \text { Type }\right)
$$

Aside: adjoints to pullback

- In a category \mathscr{C}, if pullbacks along $f: A \rightarrow B$ exist, then the functor

$$
f^{*}: \mathscr{C} / B \longrightarrow \mathscr{C} / A
$$

has a left adjoint Σ_{f} given by composition with f.

- If f is a display map and display maps compose, then Σ_{f} restricts to a functor

$$
(\mathscr{C} / A)_{\text {disp }} \longrightarrow(\mathscr{C} / B)_{\text {disp }}
$$

implementing dependent sums.

- A right adjoint to f^{*}, if one exists, is an "object of sections". \mathscr{C} is locally cartesian closed iff all such right adjoints Π_{f} exist.

Dependent products of display maps

$$
\begin{array}{cc}
(x: A),(y: B(x)) \vdash(C(x, y): \text { Type }) & \stackrel{\rightharpoonup}{b} \\
(x: A) \vdash\left(\prod_{y: B(x)} C(x, y): \text { Type }\right) & B \longrightarrow A
\end{array}
$$

Dependent products \longleftrightarrow "display maps exponentiate"

Identity types for display maps

The dependent identity type

$$
(x: A),(y: A) \vdash((x=y): \text { Type })
$$

must be a display map

Identity types for display maps

The reflexivity constructor

$$
(x: A) \vdash(\operatorname{refl}(x):(x=x))
$$

must be a section

or equivalently a lifting

Identity types for display maps

The eliminator says given a dependent type with a section

In other words, we have the lifting property

Identity types for display maps

In fact, refl has the left lifting property w.r.t. all display maps.

Conclusion

Identity types factor $\Delta: A \rightarrow A \times A$ as

$$
A \xrightarrow{\text { refl }} \operatorname{ld}_{A} \xrightarrow{q} A \times A
$$

where q is a display map and refl lifts against all display maps.

Weak factorization systems

Definition

We say $j \boxtimes f$ if any commutative square

admits a (non-unique) diagonal filler.

- $\mathcal{J}^{\square}=\{f \mid j \boxtimes f \quad \forall j \in \mathcal{J}\}$
- $\boxtimes \mathcal{F}=\{j \mid j \boxtimes f \quad \forall f \in \mathcal{F}\}$

Definition

A weak factorization system in a category is $(\mathcal{J}, \mathcal{F})$ such that
(1) $\mathcal{J}=\boxtimes \mathcal{F}$ and $\mathcal{F}=\mathcal{J}^{\boxtimes}$.
(2) Every morphism factors as $f \circ j$ for some $f \in \mathcal{F}$ and $j \in \mathcal{J}$.

Theorem (Gambino-Garner)

In a display map category that models identity types, any morphism $g: A \rightarrow B$ factors as

$$
A \xrightarrow{j} N g \xrightarrow{f} B
$$

where f is a display map, and j lifts against all display maps.

$$
(y: B) \vdash N g(y):=\operatorname{hfiber}(g, y):=\sum_{x: A}(g(x)=y)
$$

is the type-theoretic mapping path space.

The identity type wfs

Corollary (Gambino-Garner)

In a type theory with identity types,

$$
\left({ }^{\boxtimes}(\text { display maps }),\left({ }^{\boxtimes}(\text { display maps })\right)^{\boxtimes}\right)
$$

is a weak factorization system.
This behaves very much like (acyclic cofibrations, fibrations):

- Dependent types are like fibrations (recall "transport").
- Every map in ${ }^{\boxtimes}$ (display maps) is an equivalence; in fact, the inclusion of a deformation retract.

Modeling identity types

Conversely:

Theorem (Awodey-Warren, Garner-van den Berg)

In a display map category, if

$$
\left({ }^{\boxtimes}(\text { display maps }),\left({ }^{\boxtimes}(\text { display maps })\right)^{\boxtimes}\right)
$$

is a "pullback-stable" weak factorization system, then the category (almost*) models identity types.
identity types \longleftrightarrow weak factorization systems

Model categories

Definition (Quillen)

A model category is a category \mathbf{C} with limits and colimits and three classes of maps:

- $\mathcal{C}=$ cofibrations
- $\mathcal{F}=$ fibrations
- $\mathcal{W}=$ weak equivalences
such that
(1) \mathcal{W} has the 2-out-of-3 property.
(2) $(\mathcal{C} \cap \mathcal{W}, \mathcal{F})$ and $(\mathcal{C}, \mathcal{F} \cap \mathcal{W})$ are weak factorization systems.

Type-theoretic model categories

Corollary

Let \mathcal{M} be a model category such that
(1) \mathcal{M} (as a category) is locally cartesian closed.
(2) \mathcal{M} is right proper.
(3) The cofibrations are the monomorphisms.

Then \mathcal{M} (almost*) models type theory with dependent sums, dependent products, and identity types.

Homotopy theory	Type (homotopy type) theory

Examples

- Simplicial sets with the Quillen model structure.
- Any injective model structure on simplicial presheaves.

Homotopy type theory in categories

$$
\begin{aligned}
(x: A) & \vdash p: \operatorname{isProp}(B(x)) \\
& \Longleftrightarrow(x: A),(u: B(x)),(v: B(x)) \vdash\left(p_{u, v}:(u=v)\right) \\
& \Longleftrightarrow \text { The path object } P_{A} B \text { has a section in } \mathcal{M} / A \\
& \Longleftrightarrow \text { Any two maps into } B \text { are homotopic over } A
\end{aligned}
$$

$(x: A) \vdash p:$ isContr $(B(x))$
$\Longleftrightarrow(x: A) \vdash p:$ isProp $(B(x)) \times B(x)$
\Longleftrightarrow Any two maps into B are homotopic over A
\Longleftrightarrow and $B \rightarrow A$ has a section
$\Longleftrightarrow B \rightarrow A$ is an acyclic fibration

Homotopy type theory in categories

For $f: A \rightarrow B$,

$$
\begin{aligned}
\vdash p: \text { isEquiv }(f) & \Longleftrightarrow \vdash \prod_{y: B} \text { isContr }(\operatorname{hfiber}(f, y)) \\
& \Longleftrightarrow(y: B) \vdash \operatorname{isContr}(\operatorname{hfiber}(f, y)) \\
& \Longleftrightarrow \operatorname{hfiber}(f) \rightarrow A \text { is an acyclic fibration } \\
& \Longleftrightarrow f \text { is a (weak) equivalence }
\end{aligned}
$$

(Recall hfiber is the factorization $A \rightarrow N f \rightarrow B$ of f.)

Conclusion

Any theorem about "equivalences" that we can prove in type theory yields a conclusion about weak equivalences in appropriate model categories.

Coherence

Another Problem

Type theory is even stricter than 1-categories!
Recall that substitution is pullback.

$a: A \vdash P(g(f(a)))$
$b: B \vdash P(g(b))$
$c: C \vdash P(c)$

Coherence

Another Problem

Type theory is even stricter than 1-categories!
Recall that substitution is pullback.

$a: A \vdash P(g(f(a)))$
$c: C \vdash P(c)$

But, of course, $f^{*} g^{*} P$ is only isomorphic to $(g \circ f)^{*} P$.

Coherence with a universe

There are several resolutions; perhaps the cleanest is:

Solution (Voevodsky)

Represent dependent types by their classifying maps into a universe object.

Now substitution is composition, which is strictly associative (in our model category):

$$
\begin{aligned}
& A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{P} U \\
& A \xrightarrow{\text { g } \circ f} C \xrightarrow{P} U
\end{aligned}
$$

We needed a universe object anyway, to model the type Type and prove univalence.

New problem

Need very strict models for universe objects.

Representing fibrations

(Following Kapulkin-Lumsdaine-Voevodsky)

Goal

A universe object in simplicial sets giving coherence and univalence.
Simplicial sets are a presheaf category, so there is a standard trick to build representing objects.

$$
U_{n} \cong \operatorname{Hom}\left(\Delta^{n}, U\right) \simeq\left\{\text { fibrations over } \Delta^{n}\right\}
$$

But $n \mapsto\left\{\right.$ fibrations over $\left.\Delta^{n}\right\}$ is only a pseudofunctor; we need to rigidify it.

Well-ordered fibrations

A technical device (Voevodsky)

A well-ordered Kan fibration is a Kan fibration $p: E \rightarrow B$ together with, for every $x \in B_{n}$, a well-ordering on $p^{-1}(x) \subseteq E_{n}$.

Two well-ordered Kan fibrations are isomorphic in at most one way which preserves the orders.

Definition

$$
U_{n}:=\left\{X \rightarrow \Delta^{n} \text { a well-ordered fibration }\right\} / \text { ordered } \cong
$$

$\widetilde{U}_{n}:=\left\{(X, x) \mid X \rightarrow \Delta^{n}\right.$ well-ordered fibration, $\left.x \in X_{n}\right\} /$ ordered \cong (with some size restriction, to make them sets).

Theorem

The forgetful map $\widetilde{U} \rightarrow U$ is a Kan fibration.

Proof.

A map $E \rightarrow B$ is a Kan fibration if and only if every pullback

is such, since the horns $\Lambda_{k}^{n} \hookrightarrow \Delta^{n}$ have codomain Δ^{n}.
Thus, of course, every pullback of $\widetilde{U} \rightarrow U$ is a Kan fibration.

The universal Kan fibration

Theorem

Every (small) Kan fibration $E \rightarrow B$ is some pullback of $\widetilde{U} \rightarrow U$:

Proof.

Choose a well-ordering on each fiber, and map $x \in B_{n}$ to the isomorphism class of the well-ordered fibration $b^{*}(E) \rightarrow \Delta^{n}$.

It is essential that we have actual pullbacks here, not just homotopy pullbacks.

Type theory in the universe

Let the size-bound for U be inaccessible (a Grothendieck universe). Then small fibrations are closed under all categorical constructions.

Now we can interpret type theory with coherence, using morphisms into U for dependent types.

Example

A context

$$
(x: A),(y: B(x)),(z: C(x, y))
$$

becomes a sequence of fibrations together with classifying maps:

in which each trapezoid is a pullback.

Strict cartesian products

Every type-theoretic operation can be done once over U, then implemented by composition.

Example (Cartesian product)

- Pull \widetilde{U} back to $U \times U$ along the two projections π_{1}, π_{2}.
- Their fiber product over $U \times U$ admits a classifying map:
- Define the product of $[A]: X \rightarrow U$ and $[B]: X \rightarrow U$ to be

$$
X \xrightarrow{([A],[B])} U \times U \xrightarrow{[\times]} U
$$

This has strict substitution.

Problem

So far the object U lives outside the type theory.
We want it inside, giving a universe type "Type" and univalence.

Solution

Let U^{\prime} be a bigger universe. If U is U^{\prime}-small and fibrant, then it has a classifying map:

and the type theory defined using U^{\prime} has a universe type u.

U is fibrant

Theorem

U is fibrant.
Outline of proof.

$$
\begin{aligned}
& \Lambda_{k}^{n} \xrightarrow{f} U \\
& j \downarrow^{\ell} ? \\
& \Delta^{n}
\end{aligned}
$$

With hard work, we can extend $f^{*} \widetilde{U}$ to a fibration over Δ^{n} :

and extend the well-ordering of $f^{*} \widetilde{U}$ to P, yielding $g: \Delta^{n} \rightarrow U$ with $g j=f\left(\right.$ and $\left.g^{*} \widetilde{U} \cong P\right)$.

Extending fibrations

Lemma

Any fibration $P \rightarrow \Lambda_{k}^{n}$ is the pullback of some fibration over Δ^{n}.

Proof.

- Let $P^{\prime} \subseteq P$ be a minimal subfibration.
- There is a retraction $P \rightarrow P^{\prime}$ that is an acyclic fibration.
- Since Λ_{k}^{n} is contractible, the minimal fibration $P^{\prime} \rightarrow \Lambda_{k}^{n}$ is isomorphic to a trivial bundle $\Lambda_{k}^{n} \times F \rightarrow \Lambda_{k}^{n}$.

Univalence

We want to show that $P U \rightarrow \mathrm{Eq}(U)$ is an equivalence:

It suffices to show:
(1) The composite $U \rightarrow \mathrm{Eq}(U)$ is an equivalence.
(2) The projection $\mathrm{Eq}(U) \rightarrow U$ is an equivalence.
(3) The projection $\mathrm{Eq}(U) \rightarrow U$ is an acyclic fibration.

Univalence

By representability, a commutative square with a lift

corresponds to a diagram

with $E_{1} \rightarrow E_{2}$ an equivalence.and $\bar{E}_{1} \rightarrow \bar{E}_{2}$ equivalences.

Univalence

- By factorization, consider separately the cases when $E_{1} \rightarrow E_{2}$ is (1) an acyclic fibration or (2) an acyclic cofibration.
- (1) $\bar{E}_{1} \rightarrow \bar{E}_{2}$ is an acyclic fibration (Π_{i} preserves such).
- (2) \bar{E}_{1} is a deformation retract of \bar{E}_{2}.

Definition

An $(\infty, 1)$-topos is an $(\infty, 1)$-category that is a left-exact localization of an ($\infty, 1$)-presheaf category.

Examples

- ∞-groupoids (plays the role of the 1 -topos Set)
- Parametrized homotopy theory over any space X
- G-equivariant homotopy theory for any group G
- ∞-sheaves/stacks on any space
- "Smooth ∞-groupoids" (or "algebraic" etc.)

Univalence in categories

Definition (Rezk)

An object classifier in an $(\infty, 1)$-category \mathcal{C} is a morphism $\widetilde{U} \rightarrow U$ such that pullback

induces an equivalence of ∞-groupoids

$$
\operatorname{Hom}(A, U) \xrightarrow{\sim} \operatorname{Core}(\mathcal{C} / A)_{\text {small }}
$$

("Core" is the maximal sub- ∞-groupoid.)

Theorem (Rezk)

An $(\infty, 1)$-category \mathcal{C} is an $(\infty, 1)$-topos if and only if
(1) \mathcal{C} is locally presentable.
(2) \mathcal{C} is locally cartesian closed.
(3) κ-compact objects have object classifiers for $\kappa \gg 0$.

Corollary

If a combinatorial model category \mathcal{M} interprets dependent type theory as before (i.e. it is locally cartesian closed, right proper, and the cofibrations are the monomorphisms), and contains universes for κ-compact objects that satisfy the univalence axiom, then the $(\infty, 1)$-category that it presents is an ($\infty, 1$)-topos.

($\infty, 1$)-toposes

Conjecture

Every ($\infty, 1$)-topos can be presented by a model category which interprets dependent type theory with the univalence axiom.

Homotopy type theory is the internal logic of $(\infty, 1)$-toposes.
If this is true, then anything we prove in homotopy type theory (which we can also verify with a computer) will automatically be true internally to any ($\infty, 1$)-topos. The "constructive core" of homotopy theory should be provable in this way, in a uniform way for "all homotopy theories".

