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Homotopy type theory in higher categories

Recall:
homotopy type theory <+— (o0, 1)-categories
X, + types <— products, coproducts
equality types (x =y) <+— diagonals
[] types <— local cartesian closure
univalent universe Type <— object classifier



Two kinds of equality

Problem
Type theory is stricter than (oo, 1)-categories.

In type theory, we have two kinds of “equality”:
@ Equality witnessed by inhabitants of equality types (= paths).
® Computational equality: (Ax.b)(a) evaluates to b[a/x].

These play different roles: type checking depends on
computational equality.
e if a evaluates to b, and c: C(a), then also c: C(b).
e In particular, if a evaluates to b, then refl,: (a = b).

e if p: (a= b) and c: C(a), then only transport(p, c): C(b).

Two kinds of equality

But computational equality is also stricter.

Example

Composition is computationally strictly associative.

gof = Xxg(f(x))
ho (g o f) = Ax.h( (Axg(F(x))) (x)) ~ Ax.h(g(f(x)))

(hog)of =Ax.(Ay.h(g(y))(F(x)) ~ Ax.h(g(f(x)))

e This is the sort of issue that homotopy theorists are intimately
familiar with!

e We need a model for (oo, 1)-categories with (at least) a
strictly associative composition law.



Display map categories

Forget everything you know about homotopy theory; let’'s see how
the type theorists come at it.

Definition

A display map category is a category with

A terminal object.

A subclass of its morphisms called the display maps, denoted
P— Aor P— A

Any pullback of a display map exists and is a display map.

A display map P — A is a type dependent on A.

A display map A — 1 is a plain type (dependent on nothing).
Pullback is substitution.

Dependent sums of display maps

(x: A) F (B(x) : Type)

If the types B(x) are the fibers of B — A, their dependent sum
3. 4 B(x) should be the object B.
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(x: A) F (B(x) : Type)
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Dependent sums in context

More generally:

(x: A), (y: B(x)) F (C(x,y) : Type)

D«—/«—0NO

C
(x: A) (Zy: B(x) C(x,y): Type) l

A
Dependent sums — display maps compose

Aside: adjoints to pullback

e In a category €, if pullbacks along f: A — B exist, then the
functor

. €/B — €A

has a left adjoint 2 ¢ given by composition with f.

e If f is a display map and display maps compose, then X«
restricts to a functor

(%/A)disp — (%/B)disp

implementing dependent sums.

e A right adjoint to ¥, if one exists, is an “object of sections”.
% is locally cartesian closed iff all such right adjoints ¢ exist.



Dependent products of display maps

C
(x: A), (v: B(x)) F (C(x,y): Type) |
B—»A
MNgC
(x: A) (Hy: B(x) C(x,¥) Type) l
B—»A
Dependent products “display maps exponentiate”

|dentity types for display maps

The dependent identity type

(x: A), (y: A) F ((x=y) : Type)

must be a display map
ld A

l

Ax A



|dentity types for display maps

The reflexivity constructor
(x: A) F (refl(x) : (x = x))
must be a section

A*ldg ——— Ida

S

AT)AXA

or equivalently a lifting

lda

2]

AT>A><A

|dentity types for display maps

The eliminator says given a dependent type with a section

refFfC — C C
there exists
a compatible <‘l
section
A T Id A Id 4

In other words, we have the lifting property

A——C

ldq —— Id




|dentity types for display maps

In fact, refl has the left lifting property w.r.t. all display maps.

A——f*C——C

| HJ l

dy —— lda—— B

Conclusion

|dentity types factor A: A— A X A as

A4, 2 Ax A

where g is a display map and refl lifts against all display maps.

Weak factorization systems

Definition

We say j 7 f if any commutative square

X—B

Yy — A
admits a (non-unique) diagonal filler.

e J2={f|jnf VYjeJ}
« F={jljnf YfeF}

Definition

A weak factorization system in a category is (J,F) such that
®J=9Fand F=J4.
® Every morphism factors as f o for some f € F and j € J.



General factorizations

Theorem (Gambino—Garner)

In a display map category that models identity types, any
morphism g: A — B factors as

A—1 Ng N
where f is a display map, and j lifts against all display maps.

(v: B) - Ng(y) = hfiber(g,y) = ) (g(x) =)
x: A

is the type-theoretic mapping path space.

The identity type wfs

Corollary (Gambino-Garner)

In a type theory with identity types,

(Z(display maps), (2 (display maps))z)
Is a weak factorization system.

This behaves very much like (acyclic cofibrations, fibrations):
e Dependent types are like fibrations (recall “transport™).

e Every map in ¥(display maps) is an equivalence; in fact, the
inclusion of a deformation retract.



Modeling identity types

Conversely:

Theorem (Awodey—Warren,Garner—van den Berg)

In a display map category, if

('Z'(disp/ay maps), (?(display maps))z')

is a “pullback-stable” weak factorization system, then the category
(almost®) models identity types.

identity types <—  weak factorization systems

Model categories

Definition (Quillen)
A model category is a category C with limits and colimits and
three classes of maps:
e C = cofibrations
e F = fibrations
e )V = weak equivalences
such that
@ )V has the 2-out-of-3 property.
® (CNW,F) and (C,FNW) are weak factorization systems.



Type-theoretic model categories

Corollary

Let M be a model category such that
@ M (as a category) is locally cartesian closed.
® M is right proper.
© The cofibrations are the monomorphisms.

Then M (almost*) models type theory with dependent sums,
dependent products, and identity types.

Homotopy Type
theory (homotopy type) theory theory
Examples

e Simplicial sets with the Quillen model structure.

e Any injective model structure on simplicial presheaves.

Homotopy type theory in categories

(x: A) F p:isProp(B(x))

< (x: A), (u: B(x)), (v: B(x)) F (puv: (u=v))
<= The path object P4B has a section in M /A

<= Any two maps into B are homotopic over A

(x: A) F p:isContr(B(x))

<= (x: A) F p:isProp(B(x)) x B(x)
<= Any two maps into B are homotopic over A
<= and B — A has a section

<= B —» A'is an acyclic fibration



Homotopy type theory in categories

For f: A— B,

- p:isEquiv(f) <— F H isContr(hfiber(f,y))
y: B

<= (y: B) F isContr(hfiber(f,y))
<= hfiber(f) — A is an acyclic fibration

<= f is a (weak) equivalence

(Recall hfiber is the factorization A — Nf — B of f.)

Conclusion

Any theorem about “equivalences” that we can prove in type
theory yields a conclusion about weak equivalences in appropriate

model categories.

Coherence

Another Problem
Type theory is even stricter than 1-categories!

Recall that substitution is pullback,

frg*A g*P P

A B C

a: A P(g(f(a))) b: B+ P(g(b)) c: CF P(c)



Coherence

Another Problem

Type theory is even stricter than 1-categories!

Recall that substitution is pullback,

(gof) A P
A eof C
a: A P(g(f(a))) c: CF P(c)

But, of course, f*g*P is only isomorphic to (g o f)*P.

Coherence with a universe

There are several resolutions; perhaps the cleanest is:
Solution (Voevodsky)

Represent dependent types by their classifying maps into a universe
object.

Now substitution is composition, which is strictly associative
(in our model category):

A——sB—t5c-—F5yu

of
A g y C—— U

We needed a universe object anyway, to model the type Type and
prove univalence.

New problem

Need very strict models for universe objects.



Representing fibrations

(Following Kapulkin—Lumsdaine—Voevodsky)

Goal

A universe object in simplicial sets giving coherence and univalence.

Simplicial sets are a presheaf category, so there is a standard trick
to build representing objects.

U, = Hom(A", U) ~ {fibrations over A"}

But n — {fibrations over A"} is only a pseudofunctor; we need to
rigidify it.

Well-ordered fibrations

A technical device (Voevodsky)

A well-ordered Kan fibration is a Kan fibration p: E — B together
with, for every x € B, a well-ordering on p~1(x) C E,,.

Two well-ordered Kan fibrations are isomorphic in at most one way
which preserves the orders.

Definition

U, = {X — A" a well-ordered fibration}/

ordered &

~

U, = {(X,x) ‘ X — A" well-ordered fibration, x € Xn}/

ordered =

(with some size restriction, to make them sets).



The universal Kan fibration

Theorem

The forgetful map U — U is a Kan fibration.

Proof.
A map E — B is a Kan fibration if and only if every pullback

b*E — E
|7 ]
A" Sy B
is such, since the horns A} < A" have codomain A". ]

Thus, of course, every pullback of U — U is a Kan fibration.

The universal Kan fibration

Theorem

Every (small) Kan fibration E — B is some pullback of U— U:

B— U
Proof.
Choose a well-ordering on each fiber, and map x € B,, to the
isomorphism class of the well-ordered fibration b*(E) — A”". O

It is essential that we have actual pullbacks here, not just
homotopy pullbacks.



Type theory in the universe

Let the size-bound for U be inaccessible (a Grothendieck universe).
Then small fibrations are closed under all categorical constructions.

Now we can interpret type theory with coherence, using morphisms
into U for dependent types.

Example

A context
(x: A), (v: B(x)), (z: C(x,y))

becomes a sequence of fibrations together with classifying maps:

C » » »
\ [Cl/ \ tfy \ VV

U—U U—U U—U

in which each trapezoid is a pullback.

Strict cartesian products

Every type-theoretic operation can be done once over U, then
implemented by composition.

Example (Cartesian product)

e Pull Uback to U x U along the two projections w1, .

e Their fiber product over U x U admits a classifying map:

~ ~
~

(m7U) xuxu (m3U) ——

T

Ux U ™

~

e Define the product of [A]: X — U and [B]: X — U to be

x BB oy Xy

This has strict substitution.



Nested universes

Problem

So far the object U lives outside the type theory.
We want it inside, giving a universe type “Type” and univalence.

Solution

Let U’ be a bigger universe. If U is U’-small and fibrant, then it
has a classifying map:
Ny
1= U

and the type theory defined using U’ has a universe type u.

Theorem
U is fibrant.

Outline of proof.

Ay
B
An

With hard work, we can extend £*U to a fibration over A”:

fU P

=

AZT)A,’

and extend the well-ordering of U to P, yielding g: A" — U
with gj = f (and g*U = P). H



Extending fibrations

Lemma
Any fibration P — N} is the pullback of some fibration over A".

Proof.

e Let P" C P be a minimal subfibration.
e There is a retraction P — P’ that is an acyclic fibration.

e Since A} is contractible, the minimal fibration P — AV
iIsomorphic to a trivial bundle A} x F — AZ.

P NjxrFP
_
P = A} x F _ A" x F
J JXF
Nj _ A"
J O

Univalence

We want to show that PU — Eq(U) is an equivalence:

\

U x

It suffices to show:
@ The composite U — Eq(U) is an equivalence.
@® The projection Eq(U) — U is an equivalence.
® The projection Eq(U) — U is an acyclic fibration.



Univalence

By representability, a commutative square with a lift

A" — Eq(U)

|

A" —— U

corresponds to a diagram
\A
E,
/ ’ \ /
An
with E; — E> an equivalence.and Ei — E, equivalences.

Univalence

Eq

Eq Eq N Mi(Er)
\ N \
Ex — E, M;(E2)
OA" A"

e By factorization, consider separately the cases when E; — Ej
is (1) an acyclic fibration or (2) an acyclic cofibration.

e (1) E; — E5 is an acyclic fibration (I1; preserves such).
e (2) E; is a deformation retract of Es.



(00, 1)-toposes

Definition
An (o0, 1)-topos is an (oo, 1)-category that is a left-exact
localization of an (oo, 1)-presheaf category.

Examples

e oo-groupoids (plays the role of the 1-topos Set)

e Parametrized homotopy theory over any space X
e G-equivariant homotopy theory for any group G

e oo-sheaves/stacks on any space

e “Smooth oco-groupoids” (or “algebraic” etc.)

Univalence in categories

Definition (Rezk)

An object classifier in an (0o, 1)-category C is a morphism U— U

such that pullback
B ]

A—U

—
|

induces an equivalence of co-groupoids

Hom(A, U) = Core(C/A)small

(“Core” is the maximal sub-oco-groupoid.)



(00, 1)-toposes

Theorem (Rezk)

An (o0, 1)-category C is an (oo, 1)-topos if and only if
@ C is locally presentable.
@® C is locally cartesian closed.

© r-compact objects have object classifiers for k > 0.

Corollary

If a combinatorial model category M interprets dependent type
theory as before (i.e. it is locally cartesian closed, right proper, and
the cofibrations are the monomorphisms), and contains universes
for k-compact objects that satisfy the univalence axiom, then the
(00, 1)-category that it presents is an (0o, 1)-topos.

(00, 1)-toposes

Conjecture

Every (00, 1)-topos can be presented by a model category which
interprets dependent type theory with the univalence axiom.

Homotopy type theory is the internal logic of (oo, 1)-toposes.

If this is true, then anything we prove in homotopy type theory
(which we can also verify with a computer) will automatically be
true internally to any (oo, 1)-topos. The “constructive core” of
homotopy theory should be provable in this way, in a uniform way
for “all homotopy theories”.



Status of the conjecture

coGpd -------- > (00, 1)-presheaves v, (0o, 1)-toposes

A
7/
7/
v .
7/
e
/7
Ve
Ve

inverse (00, 1)-presheaves



