Inductive and higher inductive types

Michael Shulman

13 April 2012

Positive types

Recall: positive types are characterized by their introduction rules.

In fact, any choice of introduction rule(s) determines a positive type in an algorithmic way.

- The derived eliminator literally does a case analysis on the introduction rules.
- We call these introduction rules constructors.

Homotopy invariance

Question

Suppose two model categories \mathcal{M} , \mathcal{N} present the same $(\infty,1)$ -category \mathscr{C} . Do they have the same internal type theory?

- 1 All type-theoretic operations are homotopy invariant (represent well-defined $(\infty, 1)$ -categorical operations).
- 2 Therefore, any type-theoretic construction performed on equivalent data in \mathcal{M} and \mathcal{N} yields equivalent results.
- 3 All type-theoretic data is terms in (dependent) types, i.e. sections of fibrations. If all objects in $\mathcal M$ and $\mathcal N$ are cofibrant, any "section" in $\mathscr C$ can be represented in both $\mathcal M$ and $\mathcal N$.
- 4 The only trouble is with asserting computational equalities, e.g. "let G be a group with computationally associative multiplication". If we stick with properties that can be expressed in the type theory, we are fine.

Positive types

Example (Coproduct types)

- Introduction: inl: $A \rightarrow A + B$ and inr: $B \rightarrow A + B$
- Elimination: If $(x: A) \vdash (c_A : C(inl(x)))$ and $(y: B) \vdash (c_B : C(inr(y)))$, then for p: A + B we have $case(p, c_A, c_B) : C(p)$.

Example (Empty type)

- Introduction:
- Elimination: If (nothing), then for $p: \emptyset$ we have abort(p): C(p).

The natural numbers

The natural numbers are a positive type.

- **1** Formation: There is a type \mathbb{N} .
- 2 Introduction: 0: \mathbb{N} , and $(x: \mathbb{N}) \vdash (s(x): \mathbb{N})$.

A new feature: the input of the constructor "s" involves something of the type $\mathbb N$ being defined!

We intend, of course, that all elements of \mathbb{N} are generated by *successively* applying constructors.

$$0, s(0), s(s(0)), s(s(s(0))), \dots$$

Example: Addition

We define addition by recursion on the first input.

$$plus(0, m) := m$$

 $plus(s(n), m) := s(plus(n, m))$

In terms of the rec eliminator, this is

$$(n: \mathbb{N}), (m: \mathbb{N}) \vdash \mathsf{plus}(n, m) := \mathsf{rec}(n, m, \mathsf{s}(r))$$

- When n = 0, the result is m.
- When n is a successor s(x), the result is s(r).
 (As before, r is the result of the recursive call at x.)

The natural numbers

- **1** Formation: There is a type \mathbb{N} .
- 2 Introduction: 0: \mathbb{N} , and $(x: \mathbb{N}) \vdash (s(x): \mathbb{N})$.
- **3** Elimination? If $c_0: C(0)$ and $(x: \mathbb{N}) \vdash (c_s: C(s(x)))$, then for $p: \mathbb{N}$ we have match $(p, c_0, c_s): C(p)$.

But this is not much good; we need to recurse.

3 Elimination: If c_0 : C(0) and

$$(x: \mathbb{N}), (r: C(x)) \vdash (c_s: C(s(x)))$$

then for $p: \mathbb{N}$ we have $rec(p, c_0, c_s) : C(p)$.

The variable r represents the result of the recursive call at x, to be used the computation c_s of the value at s(x).

The natural numbers

- **1** Formation: There is a type \mathbb{N} .
- 2 Introduction: 0: \mathbb{N} , and $(x: \mathbb{N}) \vdash (s(x): \mathbb{N})$.
- **3** Elimination: If c_0 : C(0) and

$$(x: \mathbb{N}), (r: C(x)) \vdash (c_s: C(s(x)))$$

then for $p: \mathbb{N}$ we have $rec(p, c_0, c_s) : C(p)$.

- 4 Computation:
 - $rec(0, c_0, c_s)$ computes to c_0 .
 - $rec(s(n), c_0, c_s)$ computes to c_s with n substituted for x and $rec(n, c_0, c_s)$ substituted for r.

Computing an addition

plus(ss0, sss0) := rec(ss0, sss0, s(r))

$$\rightsquigarrow$$
 s(rec(s0, sss0, s(r)))
 \rightsquigarrow s(s(rec(0, sss0, s(r))))
 \rightsquigarrow s(s(sss0)) = sssss0

Proof by induction

3 If $c_0: C(0)$ and

$$(x: \mathbb{N}), (r: C(x)) \vdash (c_s: C(s(x)))$$

then for $p: \mathbb{N}$ we have $rec(p, c_0, c_s) : C(p)$.

When C is a predicate, this is just proof by induction.

 $\begin{array}{ccc} \text{types} & \longleftrightarrow & \text{propositions} \\ \text{programming} & \longleftrightarrow & \text{proving} \\ \text{recursion} & \longleftrightarrow & \text{induction} \end{array}$

Conclusion

Proof by induction is not something special about the natural numbers; it applies to any inductive type.

Other recursive inductive types

Generalized positive types of this sort are called inductive types.

Example (Lists)

For any type A, there is a type List(A), with constructors

$$\vdash \mathsf{nil} \colon \mathsf{List}(A)$$
$$(a \colon A), \ (\ell \colon \mathsf{List}(A)) \ \vdash \ (\mathsf{cons}(a, \ell) \colon \mathsf{List}(A))$$

Functional programming is built on defining functions by recursion over inductive datatypes.

$$length(nil) := 0$$
$$length(cons(a, \ell)) := s(length(\ell))$$

This is defined using the eliminator for List(A).

Recursively defined types

We can define dependent types as Type-valued recursive functions.

Theorem

 $0 \neq 1$.

Proof.

Define $P \colon \mathbb{N} \to \mathsf{Type}$ by "recursion":

$$P(0) := \mathbf{1}$$
$$P(\mathsf{s}(n)) := \emptyset$$

- Suppose p: (0 = 1).
- Since $\star : P(0)$, we have trans $(p, \star) : P(1) \equiv \emptyset$.
- Thus, $\lambda p. \operatorname{trans}(p, tt) : ((0 = 1) \rightarrow \emptyset) \equiv \neg (0 = 1)$.

Example: Truncation

Definition

An ∞ -groupoid is *n*-truncated if it has no nontrivial *k*-morphisms for any k > n.

- h-sets are 0-truncated.
- A is (n+1)-truncated \iff each (x=y) is n-truncated.
- A is an h-set \iff each (x = y) is an h-prop. Thus, it makes sense to call h-props "(-1)-truncated".
- A is an h-prop \iff each (x = y) is contractible. Thus, we call contractible spaces "(-2)-truncated".
- After this, it's "turtles all the way down": (-3)-truncated is the same as (-2)-truncated.
- (Voevodsky) h-level n means (n-2)-truncated.

$$isHlevel(0, A) := isContr(A)$$

 $isHlevel(s(n), A) := \prod_{x: A} \prod_{y: A} isHlevel(n, (x = y))$

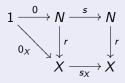
Natural numbers objects

The positive type \mathbb{N} should have a left universal property.

Definition

A natural numbers object is N with 0: $1 \rightarrow N$, s: $N \rightarrow N$, s.t.

• For any object X with $0_X \colon 1 \to X$ and $s_X \colon X \to X$, there is a unique $r \colon N \to X$ such that



= an initial object in the category of triples $(X, 1 \rightarrow X, X \rightarrow X)$.

natural numbers type $\mathbb{N} \longleftrightarrow$ natural numbers object

Inductive families

We can define dependent types inductively as well.

Example (Vectors)

For any A there is a dependent type $Vec(A) \colon \mathbb{N} \to \mathsf{Type}$, with constructors

$$\vdash \mathsf{nil} \colon \mathsf{Vec}(A,0)$$
 (a: A), (n: N), (ℓ : Vec(A, n)) \vdash (cons(a, ℓ) : Vec(A, s(n)))

(We build the length of a list into its type.)

Example (Equality!)

For any A there is a dependent type $Eq_A \colon A \times A \to \mathsf{Type}$, with constructor

$$(a: A) \vdash (refl_a: Eq_A(a, a))$$

Algebras for endofunctors

Let F be a functor from a category to itself.

Definition

An *F*-algebra is an object X with a morphism $x \colon F(X) \to X$. An *F*-algebra map is a map $f \colon X \to Y$ such that

$$F(X) \xrightarrow{F(f)} F(Y)$$

$$\downarrow x \qquad \qquad \downarrow y$$

$$X \xrightarrow{f} Y$$

An initial F-algebra is an initial object in the category of F-algebras and F-algebra maps.

Inductive types and endofunctors

inductive types \longleftrightarrow initial algebras for endofunctors

inductive type		endofunctor
N	\longleftrightarrow	$F(X) \coloneqq 1 + X$
List(A)	\longleftrightarrow	$F(X) \coloneqq 1 + (A \times X)$
A + B	\longleftrightarrow	F(X) := A + B
		(a constant endofunctor)

The eliminator directly asserts only weak initiality, but using the dependent eliminator one can prove:

Theorem (Awodey-Gambino-Sojakova)

Any inductive type W is a homotopy initial F-algebra: the space of F-algebra maps $W \to X$ is contractible.

Higher inductive types

Idea

- Inductive types are a good way to build sets: we specify the elements of a set by giving constructors.
- To build an space (or ∞-groupoid), we need to specify not only elements, but paths and higher paths.
- The iterative construction of initial algebras looks a lot like the small object argument.
- Is there an analogous notion of higher inductive type that described more general cell complexes?

Example

The circle S^1 should be inductively defined by two constructors

base :
$$S^1$$
 and loop : (base = base)

Can we make sense of this?

Constructing initial algebras

We also have:

Theorem

If F is an accessible endofunctor of a locally presentable category, then there exists an initial F-algebra.

Sketch of proof.

Take the colimit of the transfinite sequence

$$\emptyset \to F(\emptyset) \to F(F(\emptyset)) \to \cdots$$

The circle (first try)

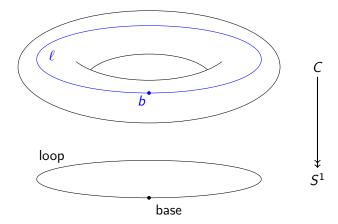
- **1** Formation: There is a type S^1 .
- 2 Introduction: base : S^1 and loop : (base = base).
- **3** Elimination: Given b: C and $\ell: (b = b)$, for any $p: S^1$ we have $match(p, b, \ell): C$.
- **4** Computation: match(base, b, ℓ) computes to b, and map(match(-, b, ℓ), loop) computes to ℓ .

What about a dependent eliminator?

Dependent loops

As hypotheses of the dependent eliminator for S^1 , we need

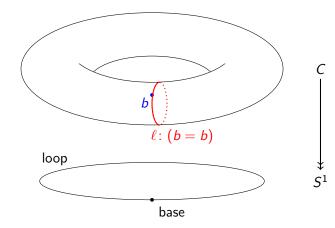
- lacktriangle A point b: C(base).
- **2** A path ℓ from b to b lying over "loop".



Dependent loops

As hypotheses of the dependent eliminator for S^1 , we need

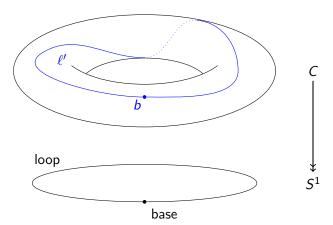
- **1** A point b: C(base).
- **2** A path ℓ from b to b lying over "loop".



Dependent loops

As hypotheses of the dependent eliminator for S^1 , we need

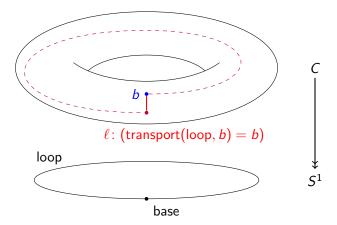
- lacktriangle A point b: C(base).
- **2** A path ℓ from b to b lying over "loop".



Dependent loops

As hypotheses of the dependent eliminator for S^1 , we need

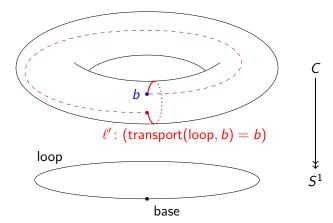
- lacktriangle A point b: C(base).
- **2** A path ℓ from b to b lying over "loop".



Dependent loops

As hypotheses of the dependent eliminator for S^1 , we need

- lacktriangle A point b: C(base).
- **2** A path ℓ from b to b lying over "loop".



The Interval

Example

The interval I is an inductive type with three constructors:

$${\sf zero}: I \qquad {\sf one}: I \qquad {\sf segment}: \big({\sf zero} = {\sf one}\big)$$

- Unsurprisingly, this type is provably contractible.
- But surprisingly, it is not useless; it implies function extensionality.

The circle (final version)

- **1** Formation: There is a type S^1 .
- 2 Introduction: base : S^1 and loop : (base = base).
- **3** Elimination: Given b: C(base) and $\ell: (\text{trans}(\text{loop}, b) = b)$, for any $p: S^1$ we have $\text{match}(p, b, \ell) : C(p)$.
- **4** Computation: match(base, b, ℓ) computes to b, and map(match(-, b, ℓ), loop) computes to ℓ .

The 2-sphere

Example

The 2-sphere S^2 has two constructors:

base2 :
$$S^2$$
 loop2 : (refl_{base2} = refl_{base2})

OR:

```
northpole : S^2

southpole : S^2

greenwich : (northpole = southpole)

dateline : (northpole = southpole)

east : (greenwich = dateline)

west : (greenwich = dateline)
```

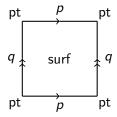
etc...

The torus

Example

The torus T^2 has four constructors:

$$\mathsf{pt}: \mathcal{T}^2$$
 $p: (\mathsf{pt} = \mathsf{pt})$
 $q: (\mathsf{pt} = \mathsf{pt})$
 $\mathsf{surf}: (p*q = q*p)$

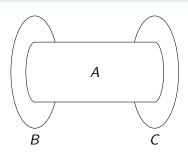


Homotopy pushouts

Example

The homotopy pushout of $f: A \rightarrow B$ and $g: A \rightarrow C$ has three constructors:

$$\begin{array}{l} (b \colon B) \ \vdash \ (\mathsf{left}(b) \colon \mathsf{pushout}(f,g)) \\ (c \colon C) \ \vdash \ (\mathsf{right}(c) \colon \mathsf{pushout}(f,g)) \\ (a \colon A) \ \vdash \ (\mathsf{glue}(a) \colon (\mathsf{left}(f(a)) = \mathsf{right}(g(a)))) \end{array}$$

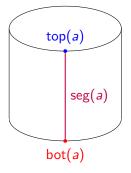


Cylinders

Example

The cylinder Cyl(A) on A has three constructors:

$$(a: A) \vdash (top(a) : Cyl(A))$$
 $(a: A) \vdash (bot(a) : Cyl(A))$
 $(a: A) \vdash (seg(a) : (top(a) = bot(a)))$



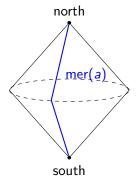
Suspension

Example

The suspension ΣA of A has three constructors:

$$\mathsf{north} : \Sigma A \qquad \mathsf{south} : \Sigma A$$

$$(a: A) \vdash (\mathsf{mer}(a) : (\mathsf{north} = \mathsf{south}))$$



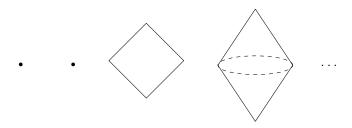
Higher spheres

Example

The n-sphere S^n is defined by recursion on n:

$$S^0 := 1 + 1$$

$$S^{\mathsf{s}(n)} \coloneqq \Sigma(S^n)$$



$\pi_1(S^1) \cong \mathbb{Z}$, classically

$$\pi_1(S^1) \cong \mathbb{Z}$$

How do we prove this classically?

- **1** Consider the winding map $\mathbb{R} \to S^1$.
- 2 This is the universal cover of S^1 .
- **3** Thus, its fiber over a point, namely \mathbb{Z} , is $\pi_1(S^1)$.

Nontriviality

Theorem

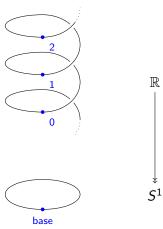
The type S^1 is contractible \iff all types are h-sets.

Proof.

Easy; S^1 is the "universal loop".

HITs by themselves don't guarantee the homotopy theory is nontrivial. We need something else, like univalence.

The universal cover of S^1



$\overline{\pi_1(S^1)}\cong \mathbb{Z}$, homotopically

$$\pi_1(S^1)\cong \mathbb{Z}$$

A more homotopy-theoretic way to phrase the classical proof:

- **1** We have a fibration $\mathbb{R} \to S^1$ with fiber \mathbb{Z} .
- 2 We have a map $* \to S^1$, whose homotopy fiber is ΩS^1 .
- 3 $\mathbb R$ is contractible, so we have an equivalence $*\simeq \mathbb R$ over S^1 . By the short five lemma, the induced map on homotopy fibers is an equivalence.

$$\begin{array}{cccc}
\Omega S^1 & \longrightarrow * & \longrightarrow S^1 \\
\sim \downarrow & \sim \downarrow & \parallel \\
\mathbb{Z} & \longrightarrow \mathbb{R} & \longrightarrow S^1
\end{array}$$

4 In particular, $\pi_1(S^1) \cong \mathbb{Z}$.

Supports

Recall: A is (-1)-truncated, or an h-prop, if

$$\prod_{x,y\colon A}(x=y).$$

The support of A, denoted supp(A), is supposed to be:

- an h-prop that contains a point precisely when A does.
- a reflection of *A* into h-props.

$\pi_1(S^1)\cong \mathbb{Z}$, type-theoretically

How can we build the fibration $\mathbb{R} \to S^1$ in type theory?

- A fibration over S^1 is a dependent type $R \colon S^1 \to \mathsf{Type}$.
- By the eliminator for S^1 , a function $R: S^1 \to \mathsf{Type}$ is determined by
 - A point B: Type and
 - A path ℓ : (B = B).
- By univalence, ℓ is an equivalence $B \simeq B$.

Thus we can take $B=\mathbb{Z}$ and ℓ to be "+1".

- All that's left to do is prove that $\sum_{x \in S^1} R(x)$ is contractible. We can do this by "induction" on S^1 .
- What we get is $\Omega S^1 \cong \mathbb{Z}$, which is classically stronger than $\pi_1(S^1) \cong \mathbb{Z}$. Here, we don't yet have a definition of π_1 .

Support as an HIT

Definition (Lumsdaine)

The support of *A* is inductively defined by two constructors:

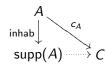
$$(a: A) \vdash (\mathsf{inhab}(a) : \mathsf{supp}(A))$$

 $(x: \mathsf{supp}(A)), (y: \mathsf{supp}(A)) \vdash (\mathsf{inpath}(x, y) : (x = y))$

The type of inpath is precisely is Prop(supp(A))!

3 if $(x: A) \vdash (c_A : C)$ and $(z, w: C) \vdash (c_= : (z = w))$, for any p: supp(A) we have $\text{match}(p, c_A, c_=) : C$.

The hypotheses of the eliminator say exactly that C is an h-prop and we have a map $A \rightarrow C$.



The rest of logic

$$P ext{ and } Q \longleftrightarrow P imes Q$$
 $P ext{ implies } Q \longleftrightarrow Q^P$
 $T ext{ (true)} \longleftrightarrow \mathbf{1}$
 $\bot ext{ (false)} \longleftrightarrow \emptyset$
 $(\forall x : A)P(x) \longleftrightarrow \prod_{x : A} B(x)$
 $P ext{ or } Q \longleftrightarrow ext{ supp}(P + Q)$
 $(\exists x : A)P(x) \longleftrightarrow ext{ supp}(\sum_{x : A} B(x))$

0-truncation

Example

The 0-truncation $\pi_0(A)$ has two constructors:

$$(a: A) \vdash (cpnt(a): \pi_0(A))$$

 $(x, y: \pi_0(A)), (p, q: (x = y)) \vdash (pp(x, y, p, q): (p = q))$

- The type of pp is precisely isHlevel(2, A).
- The eliminator says that $\pi_0(A)$ is a reflection of A into h-sets.

Now we can define

$$\pi_1(A) := \pi_0(\Omega A)$$

etc....

The magic of supp

Note: our ability to define "isProp" without using "supp" was crucial to our ability to define "supp" itself!

- Because we defined isProp using only paths, path-constructors can "universally force" a type to be an h-prop.
- Because isProp is an h-prop, these path-constructors have no other effect (give no extra data).

Nonclassicality

Remark

h-sets and homotopy groups are a bit surprising.

- **1** A map $f: A \to B$ which induces $\pi_n(A) \xrightarrow{\sim} \pi_n(B)$ for all $n: \mathbb{N}$ is not necessarily an equivalence!
 - Not closely related to non-CW-complex spaces.
 - It has to do with non-hypercomplete $(\infty, 1)$ -toposes.
 - A reason not to call "equivalences" "weak equivalences".
- 2 There may be types which do not admit a connected map from an h-set!
 - This happens in $\infty \text{Gpd}/X$ if X is not discrete.
 - As a foundation, not every ∞ -groupoid has an "underlying set" of objects (though it does have a π_0).
 - In particular, not every type has a cell decomposition.

These are "classicality properties" of ∞ Gpd, like excluded middle and the axiom of choice in Set.

Localization

Given $f: A \rightarrow B$.

Definition

- Z is f-local if $Z^B \xrightarrow{-\circ f} Z^A$ is an equivalence.
- An *f*-localization of *X* is a reflection of *X* into *f*-local spaces.

Examples

- If f is $S^n o D^{n+1}$, then f-local means (n-1)-truncated.
- Localization and completion at primes.
- Construction of $(\infty, 1)$ -toposes from $(\infty, 1)$ -presheaves.
- ...

Localization as a HIT

Definition

Given $f: A \to B$ and X, the localization $L_f X$ has constructors:

$$(x: X) \vdash (\mathsf{tolocal}(x) : L_f X)$$

$$(g: A \rightarrow L_f X), (b: B) \vdash (\mathsf{lsec}(g, b) : L_f X)$$

$$(g: A \rightarrow L_f X), (a: A) \vdash (\mathsf{lsech}(g, a) : (\mathsf{lsec}(g, f(a)) = g(a)))$$

$$(g: A \rightarrow L_f X), (b: B) \vdash (\mathsf{lret}(g, b) : L_f X)$$

$$(h: B \rightarrow L_f X), (b: B) \vdash (\mathsf{lreth}(h, b) : (\mathsf{lret}(h \circ f, b) = h(b))$$

h-isomorphisms

Recall: $f: A \rightarrow B$ is an h-isomorphism if we have

- A map $g: B \rightarrow A$
- A homotopy $r: \prod_{a \in A} (g(f(a)) = a)$
- A map $h: B \rightarrow A$
- A homotopy s: $\prod_{b \in B} (f(g(b)) = b)$

The type isHiso(f) is an h-prop, equivalent to isEquiv(f).

The meaning of localization

- Of course, tolocal is a map $X \to L_f X$.
- Isec is a map $(L_f X)^A o (L_f X)^B$.
- Isech is a homotopy from $(L_f X)^A \xrightarrow{\operatorname{Isec}} (L_f X)^B \xrightarrow{-\circ f} (L_f X)^A$ to the identity.
- Iret is a map $(L_f X)^A \to (L_f X)^B$.
- Ireth is a homotopy from $(L_f X)^B \xrightarrow{-\circ f} (L_f X)^A \xrightarrow{\operatorname{Iret}} (L_f X)^B$ to the identity.

Together, (Isec, Isech, Iret, Ireth) exactly inhabit "isHiso $(-\circ f)$ ", i.e. "isLocal(f,X)".

Thus, $L_f X$ is an f-localization of X.

The other factorization

Recall:

- A model category has two weak factorization systems:
 - (acyclic cofibrations, fibrations) (cofibrations, acyclic fibrations)
- Identity types correspond to the first WFS, using the mapping path space:

$$A \rightarrow [y: B, x: A, p: (g(x) = y)] \rightarrow B$$

• In topology, the second WFS is likewise related to the mapping cylinder.

$$A \rightarrow Mf \rightarrow B$$

Can we use HITs to construct this?

Cofibrations

What is a cofibration in type theory?

Actually, what is an acyclic cofibration in type theory? I.e. when does $i: A \rightarrow B$ satisfy $i \boxtimes p$ for any fibration p?

Acyclic fibrations

What is an acyclic fibration in type theory?

- 1 A fibration that is also an equivalence.
- 2 A fibration $p: B \rightarrow A$ which admits a section $s: A \rightarrow B$ (hence $ps = 1_A$) such that $sp \sim 1_B$.
- **3** A dependent type $B: A \to \mathsf{Type}$ such that each B(a) is contractible.

Acyclic cofibrations

Theorem (Gambino-Garner)

If B is an inductive type and i is its only constructor, then i \square p for any fibration p.

$$\begin{array}{ccc}
A & \xrightarrow{f} & Y \\
\downarrow & & \uparrow & \downarrow \\
\downarrow & & \downarrow & \downarrow \\
B & \xrightarrow{g} & X
\end{array}$$

Proof.

• p is a dependent type $Y: X \to \mathsf{Type}$; we want to define

$$h: \prod_{b:B} Y(g(b))$$

- By the eliminator, it suffices to specify h(b) when b = i(a).
- But then we can take h(i(a)) := f(a).

Path object factorizations

Example

refl: $A \rightarrow Id_A$ is the only constructor of the identity type. Thus,

$$A \xrightarrow{\mathsf{refl}} \mathsf{Id}_A \twoheadrightarrow A \times A$$

is an (acyclic cofibration, fibration) factorization.

More cofibrations

Theorem

If B is a higher inductive type and $i: A \rightarrow B$ is one of its point-constructors, then $i \boxtimes p$ for any acyclic fibration p.

$$\begin{array}{ccc}
A & \xrightarrow{f} & Y \\
\downarrow & & \downarrow & \downarrow \\
B & \xrightarrow{g} & X
\end{array}$$

Proof.

- Now we have a section $s: \prod_{x \to x} Y(x)$.
- We define $h: \prod_{b \in B} Y(g(b))$ with the eliminator of B:
 - If b = i(a), take h(b) := f(a).
 - If b is some other point-constructor, take h(b) := s(g(b)).
 - In the case of path-constructors, use the contractibility of the fibers of p.

Some cofibrations

Theorem

If B is an inductive type and i: $A \rightarrow B$ is one of its constructors, then i \square p for any acyclic fibration p.

$$\begin{array}{ccc}
A & \xrightarrow{f} & Y \\
\downarrow & ? & \downarrow p \\
B & \xrightarrow{g} & X
\end{array}$$

Proof.

- Now we have a section $s: \prod_{x \in X} Y(x)$.
- We define $h: \prod_{b \in B} Y(g(b))$ with the eliminator of B:
 - If b = i(a), take h(b) := f(a).
 - If b is some other constructor, take h(b) := s(g(b)).

The other factorization

Need a mapping cylinder for $f: A \rightarrow B$ that is dependent over B.

Definition

The mapping cylinder $Mf: B \rightarrow \mathsf{Type}$ has three constructors:

 $(b: B) \vdash (right(b): Mf(b))$ $(a: A) \vdash (left(a): Mf(f(a)))$

 $(a: A) \vdash (glue(a): (left(a) = right(f(a))))$

Theorem (Lumsdaine)

- This defines a WFS (cofibrations, acyclic fibrations).
- With the other WFS, and the type-theoretic equivalences, we have a model category (except for strict limits and colimits).

Categorical models

Conversely:

Theorem (Lumsdaine-Shulman)

A well-behaved combinatorial model category which models type theory as before (lccc etc.) also models all higher inductive types.

(In particular, simplicial sets.)

Very rough sketch of proof.

Combine the transfinite construction of initial algebras with the homotopy-theoretic small object argument.

Elementary $(\infty,1)$ -toposes

Proposal

An elementary $(\infty, 1)$ -topos is an $(\infty, 1)$ -category \mathcal{C} such that:

- $oldsymbol{0}$ C has finite limits.
- ${f 2}$ ${\cal C}$ is locally cartesian closed.
- ${\bf 3} \ {\cal C}$ has sufficiently many object classifiers.
- **4** \mathcal{C} has sufficently many "higher initial algebras" ($\Rightarrow \mathcal{C}$ has finite colimits).

Conjecture

Any elementary $(\infty, 1)$ -topos has an internal homotopy type theory modeling the univalence axiom and higher inductive types.