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The problem of large objects in topos theory

elementary topos
(objects ∼ sets)

internal logic
objects = types

indexed categories
∼ large categories

(+ unbounded quantifiers, . . . )

??

Idea

Embed an elementary topos E in a larger category Ê , whose internal
logic includes “large objects” like indexed categories and can
quantify over all objects of E .

(Throughout, we assume E is small.)



Three possibilities for Ê

1 The topos Sh(E) of sheaves for the coherent topology on E .
• An E-indexed category (stack) can be represented by many

internal categories in Sh(E), only weakly equivalent.
• Not all indexed functors represented by internal ones in Sh(E).
• In general, introduces spurious notions of equality of objects.

2 The 2-category Ps(Eop,Cat) of E-indexed categories
(pseudofunctors Eop → Cat).
• Constructions like opposites aren’t internal.
• Structure only bicategorical; internal logic not well-understood.

3 A fibration structure on the category [Eop,Gpd] of (strict)
presheaves of groupoids.
• Strictifications unique up to strong equivalence.
• Includes all functors.
• No equality of objects stricter than isomorphism.
• Can define opposites, etc., for internal categories.
• Internal logic is Martin-Löf type theory with “homotopy”.
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High-level idea

The 2-categorical structure of Gpd can be encoded in its underlying
1-category by path objects:

X Y

f

g

←→
Y I

X Y × Y
(f ,g)

where I = (• ∼= •) is the free-living isomorphism.
Moreover, Y I → Y × Y is characterized as the replacement of the
diagonal Y → Y × Y by a fibration.

We want a similar fibrational encoding of Ps(Eop,Gpd), or its
subcategory St(Eop,Gpd) of stacks.



Coflexible presheaves

[Eop,Gpd] = strict functors and strict natural transformations.
Ps(Eop,Gpd) = pseudofunctors and pseudonatural transformations.

Lemma

The inclusion [Eop,Gpd] ↪→ Ps(Eop,Gpd) has a right adjoint R.

Definition

X ∈ [Eop,Gpd] is coflexible if the map X → RX has a retraction.

Theorem

Every pseudonatural transformation between coflexible presheaves is
isomorphic to a strict natural transformation.



Injective fibrations

For f : X → Y in [Eop,Gpd], define RYX as the pullback

X RYX RX

Y RY .
f

y
Rf

Definition

f is an injective fibration if

1 Each fU : XU → YU is a fibration of groupoids, and

2 The map X → RYX has a retraction over Y .



The fibration category of indexed groupoids

The category Coflex(Eop,Gpd) of coflexible presheaves, with
injective fibrations, encodes the 2-categorical structure of
Ps(Eop,Gpd):

X Y

f

g

←→
PY

X Y × Y
(f ,g)

where PY → Y × Y is the replacement of the diagonal
Y → Y × Y by an injective fibration.



Stacks

Definition

A (pseudo)functor X : Eop → Gpd is a stack (for the coherent
topology) if

1 X (0) is equivalent to 1.

2 Each map X (U t V )→ X (U)× X (V ) is an equivalence.

3 For any equivalence relation R on U ∈ E , the following
diagram is a bicategorical limit:

X (U/R) X (U) X (R) X (R ×U R)

Definition

Let Ê denote the category of coflexible strict presheaves that are
stacks, with the injective fibration structure.
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Groupoid type theory

The internal language of the fibration category Ê is Martin-Löf
dependent type theory.

objects (coflexible stacks) ∼ types
morphisms A→ B ∼ terms x : A ` f (x) : B

injective fibrations B � A ∼ dependent types x : A ` B(x)
composite of fibrations ∼ dependent sum type

∑
x :A B(x)

pushforward of fibrations ∼ dependent function type
∏

x :A B(x)
PA� A× A ∼ identity type x : A, y : A ` IdA(x , y)

Idea

Dependent types x : A ` B(x) generalize predicates x : A ` ϕ(x),
with

∑
,
∏
, Id “generalizing” ∃,∀,=.

However, for a general groupoid-like object A, the identity type
IdA(x , y) represents the “hom-set” A(x , y).



Propositions and logic

Definition

A type A is a proposition if it has at most one element, i.e.,∏
x :A

∏
y :A IdA(x , y).

Semantically, “pointwise either empty or contractible”.

• If each type B(x) is a proposition, then so is
∏

x :A B(x), so we
can call it ∀x :AB(x).

• But
∑

x :A B(x) is not; it’s more like { x : A | B(x) }.
By ∃x :AB(x) we instead mean ‖

∑
x :A B(x)‖, where ‖ · ‖ is the

propositional truncation: the reflection into propositions.

• Similarly, if A and B are propositions, so are the function-type
A→ B (hence it is A⇒ B) and A× B (hence it is A ∧ B),
but by A ∨ B we mean ‖A t B‖.



The universe of sets

Definition

A type A is discrete if each IdA(x , y) is a proposition.

A discrete stack is equivalent to a sheaf. Internally, discrete types
are often called “sets”, but we will use that for something else:

Definition

Let U = RE , where E ∈ Ps(Eop,Gpd) is defined by setting
E (X ) = the maximal subgroupoid of E/X .

There is a canonical fibration U• → U , so any element of U “is” a
type by pullback. A type is a set if it is isomorphic to one in U .

The sets in the empty context are the representable sheaves.
(Those in other contexts are “representable natural
transformations”, i.e., U is a “classifier of representables”.)



Univalence

Ê also satisfies the following axiom, called universe extensionality
(Hofmann–Streicher) and univalence (Voevodsky).

Axiom

For sets A,B : U we have (canonically)

IdU (A,B) ∼= Iso(A,B).

Here the type Iso(A,B) of isomorphisms is by definition∑
(f :A→B)

∑
(g :B→A)

IdA→A(g ◦ f , 1A)× IdB→B(f ◦ g , 1B).

Univalence means that we cannot distinguish between objects more
finely than up to isomorphism.
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Small and large logic

• All propositions are discrete, but not all propositions are sets.

• There is a set Ω (the representable stack on the subobject
classifier of E) that classifies the set-propositions.

• Ω is closed under ∧,∨,⇒ and under ∃,∀ over sets, which
coincide with the usual internal logic of E .

• The internal logic of Ê thus extends this to include non-set
propositions like ∀(X :U ) ϕ(X ).



Large propositions are sieves

Given A ∈ Ê , taking isomorphism classes of each groupoid AX we
obtain a presheaf, whose sheafification is called π0(A) ∈ Sh(E).

Lemma

Dependent propositions (predicates) x : A ` B(x) are equivalent to
subsheaves of π0(A).

Examples

• If A =よX is representable, then B is a sieve on X ∈ E that’s
closed under the coherent topology.

• If A = U , then B is a set of isomorphism classes in each slice
E/X , closed under pullback and under coherent descent.
(Uses univalence!)

“Truth is invariant under isomorphism.”



Kripke-Joyal stack semantics

The definitions of ∃, ∀,∧,∨,⇒ in Ê yield the usual Kripke-Joyal
clauses for truth:

• x :よX ` B(x) ∧ C (x) is the sieve of morphisms Y → X
belonging to both B and C .

• x :よX ` B(x) ∨ C (x) is the sieve of morphisms Y → X such
that Y = W ∪ Z , where (W → X ) ∈ B and (Z → X ) ∈ C .

• x :よX ` B(x)⇒ C (x) is the sieve of Y → X such that for all
Z → Y , if (Z → X ) ∈ B then (Z → X ) ∈ C .

• x :よX ` ∀(y :B)C (x , y) is the sieve of Y → X such that for
any Z → Y with W ∈ B(Z ), we have (Z → X ,W ) ∈ C .

• x :よX ` ∃(y :B)C (x , y) is the sieve of Y → X such that there
is an epi Z � Y and W ∈ B(Z ) such that (Z → X ,W ) ∈ C .

Taking B = U in the last two clauses, we obtain an interpretation
of unbounded quantifiers directly in terms of E itself.



Example 1: Projective objects

Definition

P is projective if for any object E , every epi E � P has a section.

For P ∈ E , the interpretation of “P is projective” in Ê (with “for
any object E” meaning ∀E :U ”) becomes in E :

The sieve of Y → 1 such that for any Z → Y and epi
E � Z × P, there exists an epi W � Z such that E has
a section when pulled back to W × P.

Theorem

This is precisely the sieve of Y → 1 such that Y × P is internally
projective in E/Y , i.e., exponentiating by it preserves epis.



Example 2: Constructing membership-based set theory

Assume E has a NNO.

Definition

Let V be the type of well-founded accessible pointed graphs, i.e.,

V :=
∑

(X :U )

∑
(R:X×X→Ω)

∑
(?:X )

acc(X ,R, ?)× wf(X ,R)

Theorem

• V is discrete (though not a set).

• Internal to Ê , we can prove that V is a model of Intuitionistic
Bounded Zermelo set theory.



Example 3: Strong set-theoretical axioms

Recall that in ZF set theory,

• The separation axiom schema says that for any set A and
formula ϕ(x), there is a set { x ∈ A | ϕ(x) }.
• The replacement axiom schema says that for any set A and

formula ϕ(x , y) such that ∀x∈A∃!y ϕ(x , y), there is a set
{ y | ∃x∈A ϕ(x , y) }.
• The collection axiom schema is a constructively necessary

strengthening of replacement.

Elementary topos theory is equiconsistent with Bounded Zermelo set
theory, which lacks all of these axioms.



Example 3: Strong set-theoretical axioms

Using Ê , we can express a topos-theoretic analogue of separation:

Definition

E satisfies second-order separation if Ω is closed under the
quantifiers ∃(X :U ) and ∀(X :U ) in the internal logic of Ê .

Definition

E satisfies first-order separation, or is autological, if any proposition
built from ∧,∨,⇒, quantifiers ∃,∀ over sets, and ∃(X :U ) and
∀(X :U ), is itself a set.

Using Kripke-Joyal stack semantics, autology can be expressed as a
first-order axiom schema for E .



Comparing elementary toposes to set theory

Theorem

Any Grothendieck or realizability topos over Intuitionistic ZF — and
in particular, the category of sets in IZF — is autological.

Theorem

For any elementary topos E with NNO, the model V satisfies the
full collection schema. If E is autological, then V satisfies the full
separation schema, hence is a model of IZF.

BZ elementary topos

ZF autological topos
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Categories in groupoid type theory

Definition (Hofmann–Streicher, Ahrens–Kapulkin–S.)

In groupoid type theory, a category consists of

• A type A0 of objects.

• A family (x : A0), (y : A0) ` A(x , y) of morphism types.

• Each type A(x , y) is discrete.

• A family of identities x : A0 ` 1x : A(x , x).

• Composition maps
(x : A0), (y : A0), (z : A0) ` A(y , z)× A(x , y)→ A(x , z).

• Composition is associative and unital.

It is univalent if each IdA0(x , y) ∼= Iso(x , y) canonically.

In a univalent category, we cannot distinguish objects more finely
than up to isomorphism. Thus, anything we can say about them
inside type theory is categorically invariant.



Examples of categories

Semantically, a univalent category is a Cat-valued stack.

Example

The category of sets, with Set0 := U , is univalent (by the
univalence axiom). It corresponds to the self-indexing of E .

Similarly, any category of structured sets is also univalent, and
corresponds to an appropriate indexed category.

Example

A small category, in which A0 and each A(x , y) are sets, is not
usually univalent. It corresponds to an internal category in E .

Any category also has a univalent completion, which corresponds
semantically to stackification.



The magic of univalence

In fact, univalent categories are better than classical categories
defined in set theory! Consider the statement

A fully faithful and essentially surjective functor
is an equivalence of categories.

• In ZF set theory, this is equivalent to the axiom of choice.

• In particular, it is false for internal categories in most toposes
(including Sh(E)), leading to notions like “weak equivalence”
and “anafunctor”.

• But for univalent categories, it is just true!



Properties of categories

We can develop category theory “naively” inside type theory. For
univalent categories, the obvious definitions of properties such as

• locally small (each A(x , y) is a set)

• finite limits and colimits

• small (set-indexed) limits and colimits

• generating sets

• well-poweredness

• other comprehension/definability properties

• . . .

all correspond semantically in Ê to the usual “indexed” versions of
these properties.



Theorems of category theory

Traditionally, theorems of category theory like

• The Adjoint Functor Theorem

• Giraud’s Theorem

• Diaconescu’s Theorem

have to be proven separately in “indexed” versions, manually
translating families of objects into objects of fibers.

But if the usual (constructive) proofs are written in the internal type
theory of Ê (which is generally easy), they yield the indexed versions
automatically.



Internal categorical set theory

Assume E has a NNO.

Theorem

In the internal logic of Ê :

• The univalent category Set is a model of “Intuitionistic ETCS”:
a constructively well-pointed topos with NNO.

• Set always satisfies a categorical “collection axiom schema”

• If E is autological, Set satisfies a categorical “separation axiom
schema”.

If we construct a membership-based set theory from Set in the usual
way, still internal to Ê , we obtain the model V from earlier.



Thanks!
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