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0 Introduction and Outline

What is commutative algebra? The most general answer is probably something along the lines of “the
study of polynomials.” As such, this statement is too vague for us to know exactly what to expect.

• Will we be solving polynomials equations like xn ` yn “ zn over the integers? (Things like this are
the subject of number theory.)

• Or perhaps using Newton’s method to solve polynomial equations on the real line? (This problem
and its generalizations make for the beautiful theory of real algebraic geometry. Andrew Sommese
says “Everyone should write a polynomial solver at least once.” See [6])

• Or what about studying the cubic formula, or the quartic formula?

All of the above problems are dedicated to solving polynomial equations over some specific number sys-
tem (be it Z,Q,R) and which number system we choose will greatly affect what the answers are. Generally
the solution set to a system of polynomial equations is called an algebraic variety, and typically we work
with polynomials that are defined over a field (usually denoted k, for the german Körper.) Polynomials in
one variable have a finite number of solutions, but in two or more variables there are often infinitely many
solutions that form a geometric object (think: the solutions to y “ x2 in R2). In commutative algebra
we can study these polynomials themselves, namely the ideal generated by them. Like other objects that
come up in algebra (including vector spaces, subspaces, groups, subrings, fields, etc) an ideal is an subset
of a larger thing that is “closed” under some operations. I like to think about this as some sort of mystical
property.

A Trip to that Mystical Land of Closure: If you have an ideal I, then you know that I is closed under
addition, so for instance if you know that x P I and also y ´ x P I then you know that y P I as well. I
think of this like a pond full of fish. If you know certain fish are in the pond, then truly you know about
lots of other fish that must be there.

Why the digression on ponds and fish? My goal with these notes is two-fold. On the one hand I want
you to learn about the beautiful properties of ideals in polynomial rings, but also I want to present the
material in such a way that it is friendly, accessible and puts things in context with other ideas. Indeed, our
approach to prove our theorems isn’t the quickest (nor the easiest). In some cases we will give the idea of a
proof rather than all the technical details. Along the way we will adopt tools from homological algebra
and see them in action.

0.1 Where are we going

We begin with a quick game with some dots on the board and will see some rather surprising patterns.
These patterns are no coincidence (and it will take us a week to get to the bottom of this.) In the first
lecture we’ll explore ideals in Rrx1, . . . , xns that arise in many different ways and then prove the Hilbert
Basis Theorem, which says that ideals always have a finite number of generators. We’ll use Macaulay2 for
examples and solve problems about how many generators an ideal can have.

In the second and third lectures we’ll focus on the question: “Does an ideal have a basis?” We’ll
quickly see that the answer is basically always no. Undeterred, we’ll look at other objects that behave like
ideals (things like quotient rings and Rr) and see when those objects have bases (again hardly ever). We’ll
introduce the Hilbert Function and prove that it is eventually a polynomial function. To do this, we’ll
start using the abstract language of exact sequences and some hocus pocus (homology, diagram chases,
and some strange examples). In the exercises we’ll continue to explore our calculations of ideals, Hilbert
functions, kernels, etc. In the final lecture we’ll sketch a proof of the Hilbert Syzygy Theorem. We’ll do
this by defining what a free resolution is.

Adam Boocher May 2019



1 From Counting Dots to Hilbert Series

In this lecture we will begin with a combinatorial game that presents an interesting counting problem.
We will relate this problem to a question about monomial ideals and define something called the Hilbert
Function. We will compute the Hilbert Function of the polynomial ring, and for some simple quotients.
We will end with a question (later to be answered by the Hilbert Basis Theorem) that will be one of our
main motivations throughout the week.

Mysterious Warmup: Consider the following limit:

lim
tÑ1

1´ t6 ´ t7 ´ t8 ´ 2t10 ´ t11 ` t8 ` t9 ` t11 ` 2t12

p1´ tq2
“ 42.

(we could compute this say by L’Hopital’s rule if we wanted). Let’s keep this in mind as we continue.

1.1 A combinatorial game

We begin with a combinatorial game. Suppose we start with the first quadrant in the plane, and mark of a
point on each of the coordinate axes. Then go ahead and add as many dots as you’d like at lattice points
in the first quadrant. For example, below we have added the points

p0, 7q, p1, 5q, p4, 4q, p7, 3q, p9, 2q, p10, 0q.

Now we’ll draw lines up and to the right, erasing all the dots out there. We will be left with a finite
number of dots. How many do we have? In this case we have 42 dots. Pause now to imagine what the
situation might look like if instead, the points we added were something like:

p5347, 0q, p0, 167q, p23, 67q, p67, 233q, p233, 2q, p17, 170q, ¨ ¨ ¨

Surely we could find a way to count the number of dots remaining. But it wouldn’t be immediate. Below
we will show one approach that solves this problem and by the end of the week we will explain why it
works.

Notice that the shaded region (the dots we removed) has the shape of a staircase. The given points
are in red (think of these as the lower steps) and we’ve added in blue dots (the upper steps). Now we can
record the total weight of each step, (we just mean the sum of the coordinates), so our weights are

7, 6, 8, 10, 11, 10, 8, 9, 11, 12, 12.

Now let’s return to that limit we had earlier. Notice that the exponents that appear are precisely the
degrees of our steps:

1´t6 ´ t7 ´ t8 ´ 2t10 ´ t11`t8 ` t9 ` t11 ` 2t12

p1´ tq2

In fact if we factor the numerator and cancel we obtain:

1` 2t` 3t2 ` 4t3 ` 5t4 ` 6t5 ` 6t6 ` 5t7 ` 4t8 ` 4t9 ` 2t10.



Notice something quite surprising in this: The coefficients of successive powers of t are precisely the number
of dots on the ith diagonal in our picture!

# of dots under staircase encoded as coefficients “

1´
ÿ

lower steps

tdeg. step `
ÿ

upper steps

tdeg. step

p1´ tq2

(1.1)

1.2 What are all those dots?

All those dots are actually the building blocks of the polynomial ring Rrx, ys - our first object of study.
Indeed, every polynomial in Rrx, ys is built out of monomials - terms xiyj where i, j ě 0. We can think
of the exponents as vectors pi, jq and thus think of them as points in the first quadrant of the plane. You’ll
notice that there are infinitely many dots in the first quadrant, just as there are infinitely many monomials
in Rrx, ys. However if we count them by degree then we will get a finite number in each time.

Notation: Throughout these notes we will use the letter R to denote the polynomial ring Rrx1, . . . , xns
where there are some number of variables. Sometimes these variables will be x, y, z and other times
x1, . . . , xn.

Definition 1.1. The Hilbert Function of R “ Rrx, ys, denoted HFRpdq is defined by

HFRpdq “ the number of degree d monomials in R.

We sometimes think of the Hilbert function as a sequence tHFRp0q, HFRp1q, . . .u. Because we will later
generalize this definition, let’s point out an equivalent form:

HFRpdq “ the dimension of the vector space of homogeneous degree d polynomials in R.

We say that a polynomial fpx, yq is homogenous of degree d if each nonzero monomial of fpx, yq has
degree d. (Note that the zero polynomial has degree d for every d - don’t fret about this much)

Example 1.2. The polynomial f “ x4`xyz2´45x2w2 is homogeneous of degree 4. The polynomial x2`y
is not homogeneous.

If we count the number of dots in the first quadrant we see that the sequence we obtain is

t1, 2, 3, 4, 5, . . .u.

Hence the Hilbert Function of Rrx, ys is equal to this sequence of numbers.

Proposition 1.3. There are exactly d` 1 monomials of degree d in Rrx, ys. Hence

HFRrx,yspdq “ d` 1, for d ě 0.

Proof. We can actually count them all - the correspond to the d ` 1 dots on the dth diagonal in the first
quadrant. xd, xd´1y, . . . , yd. Yep - there’s d` 1.

Now naturally we can extend this to a polynomial ring in any number of variables. For instance if
we counted degree d monomials in Rrxs we’d get just 1 of each degree, so HFRrxspdq “ 1 for all d. More
generally if R “ Rrx1, . . . , xns then we define HFRpdq to be the dimension of the vector space of polynomials
of degree d. In the exercises you will show that HFRpdq “

`

n`d´1
d

˘

.
Talking about sequences of numbers is great, but it’s a bit inconvenient because we have to say things

like “the Hilbert function of this ring in this degree is blank.” Instead, why not encode everything all at
once:



Definition 1.4. Let a0, a1, . . . , be a sequence of numbers. We define the generating function for this
sequence to be the power series

a0 ` a1t` a2t
2 ` a3t

3 ` ¨ ¨ ¨ .

The power series coming from the Hilbert Function is called the Hilbert Series:

HFRp0q `HFRp1qt`HFRp2qt
2`

Notice that a generating series is nothing or less than a sequence - to go from one to the other is just
a matter of copying down coefficients. However, generating sequences are slightly more useful because can
can do algebra with them.

Example 1.5. If R “ Rrxs then the Hilbert sequence for R is

tHFRpdqu “ t1, 1, 1, 1, . . . , u

so the Hilbert Series is

1` t` t2 ` t3 ` ¨ ¨ ¨ “
1

1´ t
.

If you’re skeptical of this (maybe you should be!) then just multiply both sides by 1´ t and check that you
get equal quantities on both sides.

Example 1.6. If R “ Rrx, ys then the Hilbert sequence for R is

tHFRpdqu “ t1, 2, 3, 4, . . . , u

so the Hilbert Series is

1` 2t` 3t2 ` 4t3 ` ¨ ¨ ¨ “ the derivative of p1` t` t2 ` ¨ ¨ ¨ q

“

ˆ

1

1´ t

˙1

“
1

p1´ tq2
.

As you’ll see in the exercises, the Hilbert series of Rrx, y, zs will be

HSpRrx, y, zsq “ 1` 3t` 6t2 ` ¨ ¨ ¨ “
1

2
pthe derivative of

1

p1´ tq2
q “

1

p1´ tq3
.

This pattern continues as you will prove:

HSpRrx1, . . . , xnsq “
1

p1´ tqn
.

1.3 What are all those shaded dots? Ideals

Now let’s move to the shaded region in our picture. What properties does it have? Let’s examine the point
p3, 2q which corresponds to the monomial x3y2. We’ve decided to shade everything to the right and above
this point. Moving to the right is multiplying by x and moving up is multiplying by y. These are the basic
properties of an ideal. Remember R will always mean Rrx1, . . . , xns.

Definition 1.7. We say that a subset I Ă R “ Crx1, . . . , xns is an ideal if

1. 0 P I

2. if f, g P I then f ` g P I

3. if f P I and r P R then rf P I.



Example 1.8. The set of all multiplies of x3 is an ideal. Indeed, 0 is a multiple of x3. If we add two
multiples of x3 then we get another multiple of x3. And if we multiply a multiple of x3 by an arbitrary
polynomial then we get another multiple of x3. This is called the ideal generated by x3 and is denoted
by px3q. Ideals generated by single polynomials are called principal ideals.

In our example with the staircase above, our ideal is generated by the lower steps and we write

I “ px4, x3y2, xy4, y5q.

This means that I contains things like
x4 ` y5

p3x` 1700qx4

px` y ` 100qpxy4q ` x100

So our shaded region corresponds to the monomials in our ideal I.
Our staircase diagram above gives a graphic depiction of the monomial ideal I “ px4, x3y, xy5, y7q. It

is called a monomial ideal because its generators are monomials. If we think what polynomials are in this
ideal I then every element in the ideal must be of the form:

f “ ax4 ` bx3y ` cxy5 ` dy7.

where a, b, c, d are polynomials. In other words, every term of f must be a multiple of one of our generators
(bottom steps). In other words, this means that every term of f is in the shaded region of our diagram.
This is what we mean when we say that the shaded region of the diagram represents the ideal I. In this
case I was given to us and had 4 generators.

Often ideals are presented to us by giving a set of generators. For instance

I “ xf1, . . . , fry

means “I is the smallest ideal that contains f1, . . . , fr.” What does this mean? Well since I is an ideal, it
must be closed under addition and multiplication by elements in the ring R. So this means that I certainly
contains all polynomials of the form:

a1f1 ` ¨ ¨ ¨ ` arfr

where a1, . . . , ar P R are arbitrary polynomials. In fact, the set of all such linear combinations forms an
ideal. (Exercise: check that the three properties in the definition are satisfied).

Remark 1.9. Note that if our ideal is not a monomial ideal, then such a depiction isn’t readily available.
We’ll do lots of examples with monomial ideals, but it’s important to remember that not every ideal is
monomial. Indeed, one of the most famous ideals is the ideal of the Twisted Cubic curve defined as

I “ pxz ´ y2, xw ´ yz, yw ´ z2q.

In this case elements of the ideal I are those polynomials that are linear combinations of these three
polynomials. What might a picture of this ideal look like?

Definition 1.10. We say that an ideal is homogeneous if there is a generating set that consists of homo-
geneous polynomials. If I is homogeneous then we define the Hilbert Function of I to be:

HFIpdq “ the dimension of the vector space of homogeneous degree d polynomials in I.



Example 1.11. If R “ Rrx, ys and I “ px3q then there are no polynomials of degrees 0,1, or 2 in I. And
then in degrees 3, 4, 5 we have the monomials

x3

x4, x3y

x5, x4y, x3y2.

Thus the Hilbert Series is

0` 0t` 0t2 ` t3 ` 2t4 ` 3t5 ` ¨ ¨ ¨ “ t3p1` t` 2t` ¨ ¨ ¨ q “ t3
1

p1´ tq2
“

t3

p1´ tq2
.

Example 1.12. What about the ideal I “ px3, y3q? (Drawing the picture will help here.) The Hilbert
Series is

0` 0t` 0t2 ` 2t3 ` 4t4 ` 6t5 ` 7t6 ` 8t7 ` ¨ ¨ ¨

notice that from t5 onward we have all the possible dots. So if you want, you can think about it this way.

HRI “ HRRrx,ys ´ p1` 2t` 3t2 ` 2t3 ` t4q

“
1

p1´ tq2
´ p1` 2t` 3t2 ` 2t3 ` t4q “

1´ 2t3 ` t6

p1´ tq2
.

Notice that we see our lower (red) and upper (blue) steps appearing in this formula.

Example 1.13. In our example from the picture I “ px10, x9y2, x7y3, x4y4, xy5, y7q and we can use
Macaulay2 to calculate the HilbertSeries of I:

i1 : R=QQ[x,y]; I = ideal(x^10, x^9*x^2,x^7*y^3,x^4*y^4,x*y^5,y^7); hilbertSeries(module I, Reduce=>true)

o2 : Ideal of R

6 7 9 10 11 13

T + T - T + 2T - T - T

o3 = -------------------------------

2

(1 - T)

o3 : Expression of class Divide

Notice in both of these examples the Hilbert series was equal to some polynomial divided by p1´ tq2.

1.4 What are all those unshaded dots? Quotient Rings

Definition 1.14. If I Ă R is an ideal then the quotient ring R{I is defined to be the ring whose elements
are elements of the form f for f P R where f “ g if f ´ g P I. Arithmetic in the ring behaves as you’d
expect and is probably best done by example.

Example 1.15. Continuing with the example above, let

I “ px10, x9y2, x7y3, x4y4, xy5, y7q.

Then R{I is a ring just like R except now some polynomials are equal that weren’t before. For instance
x10 “ 0 since x10 ´ 0 P I. Indeed, if f P I then it follows that f “ 0. So all of those parts of our shaded
region are going to be zero in R{I. What’s left then - the unshaded part. It is true (Exercise!) that for a
monomial ideal I, R{I is spanned (as a k-vector space) by those monomials not in I. Macaulay2 can give
us a list of these monomials which we can count:



i1 : R = QQ[x,y]; I = ideal"x10,x9y2,x7y3,x4y4,xy5,y6"; apply(15, i-> # flatten entries basis(i,R/I))

o2 : Ideal of R

o3 = {1, 2, 3, 4, 5, 6, 5, 5, 4, 4, 2, 0, 0, 0, 0}

o3 : List

If you think about our staircase diagram, it’s clear that every dot is either above the staircase or it isn’t.

Proposition 1.16. If I is a homogeneous ideal in a polynomial ring R “ Rrx1, . . . , xns then

HSpR{Iq `HSpIq “ HSpRq “
1

p1´ tqn
.

Proof. If I is monomial then the result is clear since bases for the degree d piece of I can be chosen to be
“dots on the dth diagonal that are in I” and a basis for the degree d piece of R{I can be chosen to be “all
the remaining dots on that diagonal.”

If I is not monomial, then one can proceed in two different ways. One way leads to the beautiful subject
of Gröbner bases in which we can reduce questions about arbitrary ideals to ones about monomial ideals.
Instead, we’ll chose a more “homological” approach that proceeds with a linear algebra trick. Our goal is
simply to show that we can find bases of Id and pR{Iqd such that their union is a basis of Rd. This is not
so bad:

1. Take a basis of Id (every vector space has a basis) f1, . . . , fr

2. Extend this basis to a basis of Rd by adding elements g1, . . . , gs

3. Show that g1, . . . , gs is a basis for pR{Iqd.

We leave this final step as an exercise for the reader who wants to practice their linear algebra skills. (Highly
recommended, though probably skippable on the first pass).

The above proposition shows us that if we are concerned with Hilbert Series, then whether we compute
the Hilbert Series of I or R{I we can obtain the other. This is not a one-off situation. Indeed, it is actually
an instance of an exact sequence, which will be the topic of the next sections in this course.

1.5 Where are we going?

The main theorem we will aim for this week is the following:

Theorem 1.17. Let I be any ideal in R “ Rrx1, . . . , xns. Then the Hilbert Series of R{I is given by

HSpR{Iq “
pptq

p1´ tqn

for some polynomial pptq with integer coefficients. Furthermore, if pptq is put into lowest terms then

HSpR{Iq “
hptq

p1´ tqd

where d is the dimension of the algebraic variety defined by I.

In other words, the number of “dots under the staircase” is always given by a nice rational function. In
the exercises we’ll explore more of the ramifications of this.



Summary:

• We are dealing with polynomial rings called R “ Rrx1, . . . , xns.

• There are infinitely many polynomials, but if we look in a given degree, then degree d polynomials
in R form a finite-dimensional vector space Rd.

• We also studied ideals which are sets that are closed under addition and scalar multiplication.
We’ve mostly studied monomial ideals and will keep studying these in the coming days.

• We learned about quotient rings R{I which are what happens when we “kill” (or set equal to
zero) all the elements in an ideal I.

• Whether we’re looking at I or R or R{I we can count the number of independent polynomials of
a given degree d. This function is called the Hilbert Function. If we encode the Hilbert function as
coefficients in a power series we get something called the Hilbert Series.

• We saw that
HFR “ HFR{I `HFI ,

HSpRq “ HSpR{Iq `HSpIq,

HSpRq “
1

p1´ tqn
.

• We stated our Main Theorem that the Hilbert Series of any homogeneous ideal I in R (or a quotient
R{I) is a rational function with denominator p1´ tqn. More generally this is also true for the Hilbert
series of any graded R-module.)



1.6 Exercises for Day 1

Exercise 1. Let R “ Rrx, y, zs and I “ px2, y2, z3q.

a. Write down all the nonzero monomials in R{I in each degree d.

b. Similarly, write down the monomials in I in each degree (for small d, say) (it might help to keep R{I
and I in two columns of a table.

c. Why does it make sense that
HF pR{Iq `HF pIq “ HF pRq

and thus

HSpR{Iq `HSpIq “
1

p1´ tq3
.

(A sketch of a proof of this is in the notes)

d. Use this to find an expression for HSpIq. (No real need to get a common denominator).

e. Are you convinced that HSpIq and HSpR{Iq are each of the form pptq
p1´tq3

?

Exercise 2.

a. Prove that in any polynomial ring Rrx1, . . . , xns the set of homogeneous polynomials of degree d forms
a vector space. Show that its dimension is

`

n`d´1
d

˘

. You may have seen this in a discrete math class
in terms of “bars and stars” if that rings any bells. In any case you might also want to try counting
these things yourself in 3 variables to get used to the sequence 1, 3, 6, 10, 15, . . ..

b. Prove that the Hilbert Series of Rrx1, . . . , xns is equal to
1

p1´ tqn
. Try proving it in two different

ways:

• Take derivatives of your formula for HSpRrx1, . . . , xns and show by induction that this can help
compute the Hilbert series for the polynomial ring of one bigger dimension.

• Can you relate the number of polynomials of degree d in n variables to the number of polynomials
of degree ď d in n´ 1 variables? (Hint: the answer should be a resounding yes!) Then can you
somehow make sense of the equation

1

1´ t
¨

1

p1´ tqn
“

1

p1´ tqn`1

Exercise 3.

a. Consider the sequence t1, 2, 4, 8, . . . , 2n, . . .u. What is the generating function for this sequence?

b. Consider the Fibonacci sequence: 1, 1, 2, 3, 5, 8, . . . where each term is the sum of the previous terms.
Let

F “ 1` t` 2t2 ` 3t3 ` 5t4 ` . . . .

Calculate the series F ´ tF ´ t2F . (Your answer should be very simple). Now solve for F . You’ve
just found a closed-form expression for the generating function of the Fibonacci numbers.

Notice in these examples, these generating functions were not of the form

polynomial with integer coefficients

p1´ tqn
.

This means that these sequences do not arise as the Hilbert function of any module over a polynomial
ring.



Exercise 4. Compute the Hilbert Function or Series for the following rings

a. Rrx, ys{px2, y2q

b. Rrx, ys{px2, xy, y3q

c. (Draw the staircase diagrams for the above examples. If you’d like, can you find other examples of
different ideals that have the same Hilbert function?)

d. Rrx, y, zs{pxy, xz, yzq

Exercise 5.

a. Show that if I is a principal ideal generated in degree e then the Hilbert Series of I is equal to
te

p1´ tqn
.

b. Let f be a polynomial of degree d in R “ krx1, . . . , xns. Compute HSpR{pfqq. Your answer should
only depend on the degree of f .

Exercise 6. Compute the Hilbert series of Rrx, y, zs{px2, y3, z4q. Can you compute the Hilbert series of

Rrx1, . . . , xns{px21, x32, . . . , xn`1n q?

Try using Macaulay2 to test some examples. Note that the commands might help:

apply(10, i $->$ hilbertFunction(i,R/I))

apply(10, $i ->$ hilbertFunction(i,module(I)))

hilbertSeries(I,Reduced$=>$true)



2 How Many Generators Does An Ideal Have - and Why Do We Care?

2.1 A strategy for computing the Hilbert series

Let’s restate our goal from last time: If I is an ideal in R “ Rrx1, . . . , xns then the Hilbert series of R{I is
a rational function pptq{p1´ tqn where pptq is a polynomial with integer coefficients.

We also saw that HSpR{Iq “ HSpRq ´HSpIq. Our reason for that was simply that if we take bases
for R{I and I then their union will be a basis for R. Today we will take a slightly more abstract view - our
first step towards something called homological algebra.

Definition 2.1. We say that a sequence of maps

¨ ¨ ¨ ÑM
α
Ñ N

β
Ñ P Ñ ¨ ¨ ¨

exact at N if imα “ kerβ. A sequence is exact if it is exact at every spot.

Example 2.2.

• Consider the maps:

0 // R2 α // R3 β // R2

where

α

ˆ„

a
b

˙

“

»

–

0
0
a

fi

fl , β

¨

˝

»

–

x
y
z

fi

fl

˛

‚“

„

x
y



.

The map β is the projection onto the xy plane in R3. Notice that the image of α is the z-axis, which
is also the kernel of β. This means that the sequence is exact at R3.

But what about on the left. Is the kernel of α equal to the image of that first (zero) map? No, the

kernel of α includes vectors like

„

0
‹



which are nonzero for many choices of ‹. Thus the sequence is

not exact at the R2 (on the left).

• If Rm α
Ñ Rn Ñ 0 is exact, then it means that imα “ Rn, i.e. that α is surjective.

• If 0 Ñ Rm α
Ñ Rn is exact, then it means that kerα “ 0, i.e. that α is injective.

• The following is an exact sequence:∗

R1 tÞÑpcos t,sin tq // R2 px,yqÞÑx2`y2´1 // R1.

• The following is an exact sequence.

0 Ñ I Ñ S Ñ R{I Ñ 0.

Exact sequences with 0s on both ends and three terms in the middle are called short exact se-
quences.

Short exact sequences are of great importance in algebra. Suffice it to say, they come up a lot! But for
now, let us just consider the following fact.

∗technically this example doesn’t fit into our framework since the maps aren’t linear, but we include it because it captures
the notion of kernel and image well.



Proposition 2.3. Suppose that we have a short exact sequence of things (actually called modules)

0 ÑM Ñ N Ñ P Ñ 0

such that these maps preserve degrees of elements. Then

HSpP q “ HSpNq ´HSpMq.

In particular, since 0 Ñ I Ñ S Ñ R{I Ñ 0 is exact and preserves degrees, we have that HSpR{Iq “
HSpRq ´HSpIq.

We will define what a module is in the section chapter of these notes, but for now you should think of
this proposition as a generalization of our discovery from Chapter 1 - that HSpR{Iq “ HSpRq ´HSpIq.

This now motivates a strategy for us:

• If we want to calculate the Hilbert series of R{I, we can use a short exact sequence to reduce this
to computing the Hilbert series of R (which we know) and I.

• How can we continue this process?

One way to continue this process is to introduce a new object Rr called the free module of rank r.

Definition 2.4. Let R “ Rrx1, . . . , xns be a polynomial ring in n variables. Then Rr will denote the free
module of rank r. This consists of all ordered r-tuples of elements of R, that is

Rr “

$

’

&

’

%

»

—

–

f1
...
fr

fi

ffi

fl

, fi P R

,

/

.

/

-

.

We will talk about the elements of Rr as vectors and by ei we will denote the vectors whose only nonzero
entry is 1 in the ith position. E.g. e2 “ p0, 1, 0, 0, . . . , 0q.

Example 2.5. If R “ Rrx, ys then R2 contains things like px, yq, p´y, xq, p0, 0q, p1, 0q, px3,´x ` y100q.
Note that there is no restriction as to what can appear in the first position and what can appear in the
second.

Definition 2.6. We define the “degree d piece” of Rr to be those vectors pf1, . . . , frq all of whose entries
are of degree d. As before, we may define the Hilbert Function and Hilbert Series for Rr as

HFRrpdq “ the dimension of the vector space spanned by the degree d pieces of Rr.

Example 2.7. Let’s look at R “ Rrx, ys and try to compute the Hilbert function of R3. Remember that
the Hilbert Function of R is just t1, 2, 3, 4, 5, 6, 7, 8u. For R3 we’ll just list the (independent) elements of
each degree:

degree 0: p1, 0, 0q, p0, 1, 0q, p0, 0, 1q
degree 1: px, 0, 0q, p0, x, 0q, p0, 0, xq, py, 0, 0q, p0, y, 0q, p0, 0, yq
degree 2: px2, 0, 0q, p0, x2, 0q, p0, 0, x2q, pxy, 0, 0q, p0, xy, 0q, p0, 0, xyq, py2, 0, 0q, p0, y2, 0q, p0, 0, y2q.
You see a pattern emerge. That the Hilbert function of R3 is just three times the Hilbert function of R.

Proposition 2.8. Let R “ Rrx1, . . . , xns. The Hilbert Series of Rr is just equal to r times the Hilbert
Series of R.

HSpRrq “
r

p1´ tqn
.

Proof. The proof is left to the reader. But actually the reader is just encouraged to do some examples to
understand what is true.



Example 2.9. Consider the ideal I “ px2, y2q. Now let’s see if we can calculate the Hilbert series of I. We

first consider the map β : R2 Ñ I given by βp

„

a1
a2



q “ a1x
2 ` a2y

2. This map is surjective, (but it does not

preserve degree!) Nonetheless we can compute the kernel of β and see that it is K “ tpay2,´ax2q P R2 :
a P Ru. This seems like success!

Proposition 2.10. If I is an ideal generated by c elements pf1, . . . , fcq then the map

β : Rc Ñ I, βpr1, . . . , rcq “ r1f1 ` ¨ ¨ ¨ ` rcfc

is surjective. If its kernel is K, then the following is a short exact sequence

0 Ñ K Ñ Rc Ñ I Ñ 0.

• We have reduced the computation of the Hilbert Series of R{I to computing that of I.

• If we can find some surjective map β : Rr Ñ I, then this will give rise to a short exact sequence

0 Ñ K Ñ Rr Ñ I Ñ 0.

where K is the kernel of β.

• Then by the magic of short exact sequences, this should reduce our computation to computing
HSpKq.

There are two issues in the above. First - how do we know there is a surjective map from Rr to I. This
is tantamount to saying that I has a finite number of generators. Secondly, we need to deal with the
fact that these maps don’t preserve degree (this might seem more major, but it’s actually just a small
technical problem that we’ll address on the final day).

2.2 How many generators does an ideal have?

It’s important to realize that every nonzero ideal in Rrx1, . . . , xns has infinitely many elements. Indeed, it’s
even infinite dimensional as a vector space. (We need all those dots in the picture!) However, all of the
ideals that we have seen so far were finitely generated meaning that there was a finite set of polynomials
such that any polynomial in the ideal could be written as a combination with polynomial coefficients
of those polynomials.

Example 2.11. Let I be the set of all polynomials with constant term 0. We can check that this set forms
an ideal. (It’s closed under addition and scalar multiplication). Can we find a set of generators for this
ideal? It turns out that

I “ px1, x2, . . . , xnq.

Indeed, any polynomial with a zero constant term can be written as a combination of x1, . . . , xn and
conversely any combination of the form

g1x1 ` ¨ ¨ ¨ ` gnxn

will have a constant term of zero. It’s because these coefficients are allowed to be polynomials (and not
just constants) that give us this freedom.

In the previous example we saw the first time that we defined an ideal in a way other than “giving
finitely many generators.” Instead we gave a holistic description (the constant term is zero). In general
there are lots of ways to define an ideal and depending on the definition it’s not at all clear whether that
ideal is finitely generated. This leads us to our first major question:



Question 2.12. If I is an ideal in Rrx1, . . . , xns then is I finitely generated?

Example 2.13. Consider the ideal I in Rrxs defined by:

I “ px2 ´ 1, x3 ´ 1, x5 ´ 1, . . . , xp ´ 1, . . . , where p is primeq

At first glance it’s not clear whether or not I can be generated by a finite number of polynomials. For
instance, is I generated by the first 1000 polynomials of the form xp ´ 1? If so, then is it obvious how to
write x7927 ´ 1 (that’s the 1001st prime) as a combination of the previous polynomials? As it turns out,
the ideal I is in fact generated by a single element of I!

I “ px´ 1q.

Why is this true? Well first notice that every generator of I is a multiple of px ´ 1q, so it’s true that
I Ă px´ 1q. Now for the other inclusion we just need to show that x´ 1 P I. But notice that

px3 ´ 1q ´ xpx2 ´ 1q “ x´ 1

and the left hand side is evidently in I.

Example 2.14. Let’s move on to ideals with 2 variables, for instance our staircase diagrams. In this case
it is possible to have arbitrarily many generators. Indeed, the ideal

I “ pxn, xn´1y, xn´2y2, . . . , xyn´1, ynq

requires all n ` 1 of those generators. (Exercise: What does the staircase picture of this ideal look like?)
So if we wanted to, we could write down an ideal in two variables that requires a million generators.

Example 2.15. Consider the following ideal

I “ px2p`1 ´ xp´2yp`3 ` y2p`1, where p is prime and p ą 500q.

This ideal is again defined by infinitely many polynomials and it is wildly unclear how many generators
this ideal needs - perhaps it needs all infinitely many of these. I’m actually not sure how many generators
this ideal needs - can you figure it out? I’ve checked that if you only go up to p ă 6000 then the ideal of
all those polynomials is in fact generated by just four polynomials (see below for the Macaulay2 readout):

i1 : R = QQ[x,y];

i2 : I = ideal (select(6000, p-> isPrime p and p > 500)/(p-> x^(2*p+1) - x^(p-2)*y^(p+3) + y^(2*p+1)));

o2 : Ideal of R

i3 : mingens I

o3 = | x1007-x501y506+y1007 x513y506-x507y512-x12y1007+y1019 x30y1013-x18y1025-x12y1031+y1043

x511y536-x509y538+x22y1025-x20y1027+x16y1031-x14y1033-x10y1037+x8y1039-2x4y1043+x2y1045+y1047 |

1 4

o3 : Matrix R <--- R

In general now imagine an ideal in n variables, defined in some way - perhaps as the kernel of a ring
map, or perhaps with an ostensibly infinite generating set. With that in mind, hopefully the following
theorem comes as a reasonable surprise:

Theorem 2.16 (Hilbert’s Basis Theorem). In a polynomial ring Rrx1, . . . , xns every ideal is finitely gen-
erated.



There are many proofs of the Hilbert Basis theorem. For those interested in computation, I recommend
reading the book “Ideals, Varieties and Algorithms” by Cox, Little and O’Shea [3] There the authors develop
the theory of Gröbner bases. After this is done, they are able to reduce the proof of the Hilbert Basis
Theorem from the general case to the case that I is generated by (potentially infinitely many) monomials.
Then it’s a combinatorial argument to prove that such an ideal must be finitely generated. Even this isn’t
trivial though. Before we begin the proof, we mention that rings where every ideal is finitely generated are
called Noetherian rings after Emmy Noether.

Proof. Notice that e.g. R and Rrxs are both Noetherian as worked out in the examples above, so if we can
prove

R Noetherian ùñ Rrys Noetherian

then by induction we will have that Rrx1, . . . , xns is Noetherian.
So suppose that R is a Noetherian ring and suppose that I is an ideal in Rrys that is not finitely

generated. We will hope for a contradiction. As before, suppose that there is a sequence of elements
f1, f2, . . . such that fi P Izpf1, . . . , fi´1q Further, suppose that in this process when we are finding fi, we

choose fi to be of smallest possible degree in y. So for instance, to find f8 we look for polynomials in I
that are not in pf1, . . . , f7q (there must be some since I is not finitely generated) - take one of lowest degree.
Then we have that

deg f1 ď deg f2 ¨ ¨ ¨

Now we want to somehow use our hypothesis that R is Noetherian. Well remember that each polynomial
fi is just some polynomial in y with coefficients in R. So it’s something like

fi “ pleading coefficientqym ` . . .` a0.

Let ai be that leading coefficient of fi. Note that ai P R. Then we can form a chain of ideals in R. Let J
denote the ideal generated by all the ai.

pa1q Ď pa1, a2q Ď pa1, a2, a3q Ď ¨ ¨ ¨ Ă J

Now since R is Noetherian, J is finitely generated. So that means that J “ pa1, . . . , aN´1q for some N .
(Think about why this is true).

This means that aN is in the ideal generated by the previous ai, say

aN “
N´1
ÿ

j“1

rjaj , rj P R.

Now let’s try to cook up a polynomial in y. Let’s try

g “
N´1
ÿ

j“1

rjx
deg fN´deg fifi.

What is going on? Well the leading coefficient of this polynomial is going to have degree deg fN , and the
leading coefficient will be aN . (Think about why this is true - the leading coefficient of fi is ai.) Note that
g P pf1, . . . , fN´1q and by construction we chose fN to not be in pf1 . . . , fN´1q. So this means that fN ´ g
is not in pf1, . . . , fN´1q, but since the leading terms of fN and g are the same, it means that fN ´ g has

lower degree. But this is a contradiction since we chose fN to be the smallest possible degree with this
property.



2.3 Summary

In this section we have

• Defined exact sequences and discussed how they help us compute Hilbert Series

• We have seen that every ideal in Rrx1, . . . , xns is finitely generated.

• This finite generation allows us to construct short exact sequences

0 Ñ K Ñ Rc Ñ I Ñ 0

and thus reduce our Hilbert function computation to computing that of K.

Still TODO are the following:

• We’ve been a bit handwavey about what happens when the degrees aren’t preserved in these exact
sequences. We’ll see this isn’t a big deal, but is something to examine.

• What next? What if K is even more complicated that I? (it probably is) Can we repeat this
process? (yes) will it ever end? (we’ll see!)



2.4 Exercises for Day 2

Exercise 1. If your group would like to talk through the proof of the Hilbert Basis Theorem, please check
out the proof in the notes. Also you can work through the proof that pxp ´ 1, p is primeq “ px´ 1q.

Exercise 2.

a. Consider the following maps of “Z modulo 4” where each map is “multiply by 2”

¨ ¨ ¨
p2q // Z{4Z

p2q // Z{4Z
p2q // Z{4Z

p2q // ¨ ¨ ¨

Show that this is exact everywhere.

b. Let V and W be vector spaces. Find appropriate definitions of α and β so that

0 // V
α // V ‘W

β //W // 0

is exact. Recall that V ‘W consists of all vectors

„

v
w



such that v P V and w PW .

Exercise 3. In this exercise you’ll see why if 0 //M
α // N

β // P // 0 is a short exact sequence
that preserves degree then HSpP q “ HSpNq ´HSpMq.

a Let Md, Nd, Pd denote (respectively) the vector space of degree d elements of M,N and P . Since α
and β preserve degrees means that for any d, we have an exact sequence

0 //Md
α // Nd

β // Pd // 0

of vector spaces.

b Conclude that you may reduce to the claim: If

0 // U
α // V

β //W // 0

is an exact sequence of vector spaces then dimW “ dimV ´ dimU.

c What does the rank nullity theorem say about the map α? About the map β?

d Use your answers from above to prove that dimW “ dimV ´ dimU . Your proof should use every
part of the short exact sequence.

e As an application of Exercise 2 b) use this to prove that HSpR2q “ 2HSpRq.

(Optional - probably best to come back to this later) Can you generalize this result: Show that if

0 Ñ Vn Ñ Vn´1 Ñ Vn´2 Ñ ¨ ¨ ¨ Ñ V0 Ñ 0

is an exact sequence of vector spaces then

dimV0 “ dimV1 ´ dimV2 ` dimV3 ˘ ¨ ¨ ¨ ` p´1qn`1 dimVn.

Exercise 4. If you know that for all e, the HF of A in degree d is equal to the HF of B in degree d` e for
all e then which of the following is true

HSpAq “ teHSpBq, or teHSpAq “ HSpBq?



Exercise 5. Let I be an ideal such that

HSpR{Iq “ p1´ 3t2 ` 2t3q{p1´ tq3.

Find an explicit formula for the coefficient of tN for N large. Hint: First factor and then use the fact that
1{p1´ tq “

ř

tj .

Exercise 6. Suppose that f : T Ñ R is a ring homomorphism, that is, it’s a map that preserves the
ring properties:

fpabq “ fpaqfpbq, fpa` bq “ fpaq ` fpbq.

Show that the kernel of f is an ideal in T .

Exercise 7.

1. Can you find two different staircase diagrams that have the same Hilbert function (i.e. dots under
the staircase)? If so, write down their Hilbert series using the formula from the notes:

HSpR{Iq “

1´
ÿ

lower steps

tdeg. step `
ÿ

upper steps

tdeg. step

p1´ tq2
(2.1)

What do you notice? (You should see that some dots will cancel in the numerator. These are
sometimes called ghost terms)

2. By hand, compute the Hilbert series for the quotient of Rrx, ys by the following three ideals:

I “ px2, y2q, J “ px2, xy, y3q, L “ px2 ` xy, y2q.

For the third one, the ideal is not a monomial ideal so be careful. You can check your answers
with Macaulay2. Note that the command hilbertSeries I computes the Hilbert series of R{I. If
you want the Hilbert series of I itself you can type hilbertSeries module I. You can also try the
commands

hilbertSeries(I, Reduced=> true)

to put things in lowest terms.

Exercise 8. Do you want to try something called a “diagram chase”? If you feel like the answer to this
question might be yes, then this could be the exercise for you! It’s something called the Five Lemma, and
it uses the words commutative diagram which means e.g. in the following diagram that no matter how
you get from A1 to B2, you’ll end up in the same place. I.e. that if x P A1 then t2pf1pxqq “ g1pt1pxqq. With
that in mind, here goes!

Suppose the following is a commutative diagram with exact rows - that means the rows are exact
sequences, (each):

A1

t1
��

f1 // A2

t2
��

f2 // A3

t3
��

f3 // A4

t4
��

f4 // A5

t5
��

B1
g1 // B2

g2 // B3
g3 // B4

g4 // B5

Then prove:

a. If t2 and t4 are surjective and t5 is injective, then t3 is surjective.

b. If t2 and t4 are injective and t1 is surjective, then t3 is injective.

c. Conclude that if t1, t2, t4, t5 are isomorphisms then t3 is an isomorphism.

You can assume that all of the Ai and Bi are vector spaces and that all the maps are linear transforma-
tions. (All that’s really important though is that e.g. f1px` yq “ f1pxq ` f1pyq.)



3 Modules

We begin with comparing how linear algebra works over a field (the study of vector spaces) and over a
polynomial ring (the study of modules).

3.1 What is a module?

We begin by comparing some of the properties of vector spaces as compared with those of modules.

Linear Algebra over R

1) We study vector spaces V .

v, w P V, c P R a scalar.

V is closed under addition and scalar multiplication:

v ` w P V, cv P V.

(and there are a bunch of axioms)

2) The maps we care about between vector spaces
are linear maps T : V ÑW

T pv ` wq “ T pvq ` T pwq, T pcvq “ cT pvq.

3) Vector spaces have subspaces: U Ă V is a sub-
space if U is closed under addition and scalar mul-
tiplication.

4) A basis for V is a set tv1, . . . , vnu that spans V
that is linearly independent. (i.e. the only solution
to

c1v1 ` ¨ ¨ ¨ ` cnvn “ 0

is when all the ci are zero.)

5) Every vector space has a basis.

Linear Algebra over Rrx1, . . . , xns

1) We study modules M .

m,n PM, f P R a polynomial (scalar)

M is closed under addition and scalar multiplica-
tion:

m` n PM, fm PM.

(and there are a bunch of axioms)

2) The maps between modules are linear maps
T : M Ñ N

T pm` nq “ T pmq ` T pnq, T pfmq “ fT pmq.

3) Modules have sub-modules: P Ă M is a sub-
module if P is closed under addition and multipli-
cation by polynomial (scalars).

4) A basis for M is a set tm1, . . . ,mnu that spans M
that is linearly independent. (i.e. the only solution
to

c1m1 ` ¨ ¨ ¨ ` cnmn “ 0.

is when all the ci are zero.)

5) It is madly false that every module has a basis!

Definition 3.1. (First Definition) Let R be a polynomial ring. Then an R-module M is a mathematical
object defined so that we can add elements of M and multiply elements of M by polynomials in R (and
some basic rules apply).

Example 3.2. Let R be a polynomial ring and let I be an ideal. Then the following are all R-modules:

• R;

• I;

• R{I;

• Free modules Rr

There are modules other than these, but for now these modules will be good for our purposes.



Example 3.3. What does it mean to be a sub-module of R? A set M Ă R is a submodule if for f, g PM
and r P R, f ` g PM and rf PM . This means that

• Submodules of R are ideals.

Example 3.4. The module R is generated by one element 1. But submodules (i.e. ideals) can require
many many generators.

3.2 Do Modules have a basis?

Example 3.5. Does the ideal I “ px, yq have a basis? The answer is no. First, it’s clear that there can
be no basis of size 1. (No single polynomial in I can span all of I). Now suppose there is a basis of size
ě 2. Then the basis will contain two polynomials, call them f and g. But then these are not linearly
independent. Indeed gpfq ` p´fqg “ 0.

Ideals with more than two generators do not have a basis (as R-modules)! We can always write down
linear dependence relations on polynomials f, g:

pgqf ` p´fqg “ 0

.

Definition 3.6. The module Rr is called free module of rank r. This module has a basis (verify this)
e1, . . . , er where e1 “ r1, 0, . . . , 0s, . . . , er “ r0, . . . , 0, 1s.

Proposition 3.7. If a module M has a finite basis of cardinality r then M – Rr.

3.3 Maps between Modules

Now that we have modules, we will want to find maps between modules. Let’s imagine we have a map
between modules φ : M Ñ N . We could imagine lots of such functions that randomly jumble the elements
of M and N together. But rarely do we study such functions.

• In real analysis we endeavor to study things like continuous functions. Why is this? Well the real
numbers have a beautiful property of being complete - points can get arbitrarily close to one another.
In a sense, continuity preserves this closeness. If x and y are sufficiently close to each other and
f is continuous, then we can guarantee, say that fpxq and fpyq are within 0.0001 of each other.
Continuous preserves something we care about. And whoa, it turns out that continuous functions are
great functions to study.

• In linear algebra we study maps that are linear - things like T pu` vq “ Tu` Tv, T pcvq “ cTv. Why
is this? Well it’s because in a vector space we might not have continuity, but we definitely have a way
to add vectors and we have a way to multiply by scalars. It’s reasonable to want our transformations
to preserve this. So if u` v “ w then it’s reasonable to want that Tu` Tu “ Tw. This is precisely
what linear maps do. And if you set about studying linear maps you’ll wind up typing a linear algebra
textbook and discover all sorts of beautiful things!

• In a module M we can add elements and multiply by scalars (polynomials) so we will require that a
map φ : M Ñ N of modules be linear in the sense that if m1,m2, PM and f P R then

φpm` nq “ φpmq ` φpnq

φpfmq “ fφpmq.



3.4 Noetherian Modules

Remember, throughout these notes R “ Rrx1, . . . , xns.

Definition 3.8. We say that an R-module M is Noetherian if every sub-module of M is finitely generated.

Proposition 3.9. Since every ideal is finitely generated, R is a Noetherian R-module.

Proposition 3.10. If 0 //M 1 α //M
β //M2 // 0 is a short exact sequence of R-modules then

M is Noetherian if and only if M 1 and M2 are both Noetherian.

Proof. Suppose that M is Noetherian. Then suppose that M 1 has a submodule N ĂM 1 that if not finitely
generated. Then consider the image αpNq Ă M . This has to be finitely generated since M is Noetherian.
This means that some set αpn1q, . . . , αpngq must generate αpNq. Now you can check that pn1, . . . , ngq must
generate N . Indeed, if n P N then αpnq is a combination of the αpniq. Thus

αpnq “
ÿ

ciαpniq “
ÿ

αpciniq

By the fact that α is injective, we must have that n is a linear combination of the ni, so that they generate
all of N .

The rest of the proof is left as an exercise.

Corollary 3.11.

1. If φ : M Ñ N is a map of R-modules and M is Noetherian then kerφ is Noetherian.

2. Free modules Rr are Noetherian.

3. Any R-module that is finitely generated is Noetherian.

Proof. a) follows immediately from the previous proposition and the fact that

0 Ñ kerφÑM Ñ imφÑ 0

is a short exact sequence.
For b) we proceed by induction. For instance, to see that R2 is Noetherian, consider the exact sequence

0 Ñ R1 Ñ R2 Ñ R1 Ñ 0

where the first maps sends pfq ÞÑ pf, 0q and the second sends pf, gq ÞÑ pgq. The reader can verify that this
is a short exact sequence. Since both the module on the left and right are Noetherian, so must the module
in the middle. We to continue the induction we just note that there is an exact sequence

0 Ñ Rr Ñ Rr`1 Ñ RÑ 0

so if we know that Rr is Noetherian, then the lemma guarantees that Rr`1 is Noetherian.
(c) This is a great exercise.



3.5 Exercises for Day 3

Exercise 1. Let M “ pfq be a principal ideal. Prove that M has a basis, and thus that M is isomorphic
to R. Can you find an explicit isomorphism φ : RÑ pfq?

Exercise 2. Recall that if R “ Rrx1, . . . , xns then by Rd we mean the vector space of homogeneous
polynomials of degree d.

In this exercise we’re going to put a funky (but very useful) different grading on R. We will denote this
funky grading by Rpeq.

• As a module, Rpeq is just the same as R. It’s the degrees of the elements which are different.

• The degree d piece of Rpeq is equal to Rd`e. That is

Rpeqd “ Rd`e.

If R “ Rrx, ys

a. Write down a basis for the following:

Rp3q1, Rp´3q4, Rp´2q2, Rp´2q1

b. In Rp´4q what is the degree of the polynomial x3?

c. In Rp´dq what is the degree of the polynomial 1?

d. Does the map φ : RÑ R defined by φpfq “ x2f preserve degree? (No)

e. Does the map φ : Rp´2q Ñ R defined by φpfq “ x2 ¨ f preserve degree? (Yes!) Indeed, check this:
what is the degree of x2y2 in Rp´2q? What is the degree of φpx2y2q in R?

f. In the module Rp´2q ‘Rp´3q convince yourself that the vector

„

x2

y



has degree 4.

g. Prove that the map φ : Rp´2q ‘Rp´3q Ñ R defined by φp

„

a
b



q “ ax2 ` by3 preserves degree. If you

want, just check that

„

x2

y



(which has degree 4 by the previous part of this exericse) gets maped to

something of degree 4 in R.

h. Prove that the Hilbert series of Rp´dq is ¨ td

p1´tq2
. (or more generally td

p1´tqn .)

Exercise 3. Let I “ px2, xy2q. Consider the map φ : R2 Ñ R defined by

φp

„

a
b



q “ ax2 ` bxy2.

1. Convince yourself (or prove) that the image of φ is equal to I.

2. Calculate the kernel of φ. There should be one element that generates the kernel. All other elements
in the kernel will be multiples of it.

3. Go to www.macaulay2.com and type

R=QQ[x,y]; I = ideal(x^2, x*y^2); C= res I; C.dd



Macaulay2 should display some output. The first line gives the generators of I. Next comes the
generator of the kernel (as a column) vector. This should match very closely what you got.

Exercise 4. Let I “ px, y, zq in Rrx, y, zs. Consider the map φ : R3 Ñ R defined by

φp

»

–

a
b
c

fi

flq “ ax` by ` cz.

1. Convince yourself (or prove) that the image of φ is equal to I.

2. Calculate the kernel K of φ. This will be more challenging that the previous example. Hint: Aim
to find three different elements in the kernel: one with a zero in the first row, one with a zero in the
second, and one with a zero in the third row. You might not be able to completely prove that you’ve

computed the whole kernel, but your goal should be to find three independent elements

»

–

a
b
c

fi

fl in the

kernel.

3. Now if your three kernel elements are v1, v2, v3 (thought of as vectors) then consider the map ψ :
R3 Ñ R3 defined by the 3 ˆ 3 matrix ψ “ rv1 v2 v3s. Convince yourself that the image of ψ is K.
Can you compute the kernel of ψ?

4. Go to www.macaulay2.com and type

R=QQ[x,y,z]; I = ideal(x,y,z); C= res I; C.dd

Macaulay2 should display some output. The first line gives the generators of I. Next will come
the three elements of the kernel that you found, these are presented as the columns of the matrix ψ.
Finally, you get the kernel of ψ as a column matrix.

Exercise 5. Consider the short exact sequence,

0 ÑM ÑM ‘N Ñ N Ñ 0

where the first map just sends m to

„

m
0



and the the second map sends

„

m
n



to n. These maps will preserve

degrees (since we’re not changing anything). Conclude that the Hilbert Function / Hilbert Series of M ‘N
is equal to that of M plus that of N :

HSpM ‘Nq “ HSpMq `HSpNq.

1. Use this to calculate the Hilbert Series of Rp´dq ‘Rp´eq.

2. What is the Hilbert Series of Rp´3q4 ‘Rp´4q2 ‘Rp´5q7?

Exercise 6. If you want to get some practice with the Noetherian property, complete the proof of Propo-
sition 3.10 and Corollary 3.11 c.



4 Putting it all together: The Hilbert Syzygy Theorem

We are now ready for our triumphant conclusion - a discussion of the Hilbert Syzygy Theorem! Let’s recall
what we’ve done up to this point:

• R “ Rrx1, . . . , xns and I is an ideal.

• 0 Ñ I Ñ RÑ R{I Ñ 0 is an exact sequence.

• I is finitely generated (Hilbert Basis Theorem) say by b1 elements.

• So there’s an exact sequence 0 Ñ K1 Ñ Rb1 Ñ I Ñ 0

• Since Rb1 is Noetherian, we know that K1 is finitely generated, say by b2 elements. This means that
we can find an exact sequence 0 Ñ K2 Ñ Rb2 Ñ K1 Ñ 0.

• We can continue this process.

We put all this information into the following schematic:

Definition 4.1 (/Proposition). If M is a finitely generated module over R then there process above will
yield an exact sequence of maps:

¨ ¨ ¨ // Rbi // Rbi´1 // ¨ ¨ ¨ // Rb1 // R // R{I Ñ 0.

This sequence of maps is called a free resolution of R{I.

Proof. If we put everything together in the algorithm we described above we’ll get a smorgasbord of maps
like this:

0

!!

0 0

""

0

K3

<<

!!

K1

<<

!!
¨ ¨ ¨

>>

Rb3

!!

Rb2

==

Rb1

��

R // R{I // 0

K2

==

""

I

@@

��
0

<<

0 0

>>

0

.

Notice that there is a well-defined map from Rbi to Rbi´1 obtained just by composing the diagonal maps.
We will use those maps to define the new (blue) maps in the diagram below

0

!!

0 0

""

0

K3

<<

!!

K1

<<

!!
¨ ¨ ¨ //

>>

Rb3

!!

// Rb2 //

==

Rb1

��

// R // R{I // 0

K2

==

""

I

@@

��
0

<<

0 0

>>

0

.



Finally we remove the noise and are left with a sequence of maps.

¨ ¨ ¨ // Rb3 // Rb2 // Rb1 // R // R{I // 0

Checking that this sequence is exact is an exercise.

The numbers bi that arise in this construction are called the betti numbers of R{I. There are many
tantalizing questions about the betti numbers of R{I. By convention b0 “ 1.

Conjecture 1 (Buchsbaum-Eisenbud-Horrocks Rank Conjecture (1977) [2]). Suppose that I Ă Rrx1, . . . , xns
is an ideal and that I contains a power of each variable. Then bi ě

`

n
i

˘

for all i.

4.1 Examples

Let’s do some examples on Macaulay2 and see if we see any patterns. We actually begin with the ideal
that started it all - that staircase from Section 1:

I “ px10, x9y2, x7y3, x4y4, xy5, y7q.

The following code will return the resolution of R{I.

R = QQ[x,y]; I = ideal(x^10, x^9*y,x^7*y^3,x^4*y^4,x*y^5,y^7); res I

1 6 5

o14 = R <-- R <-- R <-- 0

0 1 2 3

This means that b1pR{Iq “ 6 and b2pR{Iq “ 5. Let’s try another example.



I “ px2, y3, z4q

i1 : R = QQ[x,y,z]; I = ideal(x^2, y^3, z^4); C = res I

o16 : Ideal of R

1 3 3 1

o17 = R <-- R <-- R <-- R <-- 0

0 1 2 3 4

This means that b1 “ 3, b2 “ 3, b3 “ 1. In fact we can peek at the maps: by

i1 : C.dd

1 3

o25 = 0 : R <---------------- R : 1

| x2 y3 z4 |

3 3

1 : R <----------------------- R : 2

{2} | -y3 -z4 0 |

{3} | x2 0 -z4 |

{4} | 0 x2 y3 |

3 1

2 : R <--------------- R : 3

{5} | z4 |

{6} | -y3 |

{7} | x2 |

1

3 : R <----- 0 : 4

0

Those numbers on the left are telling us the degrees of the maps. More on this in the next section.



Even ideals with as few as three generators can have a long resolution. For instance

I “ px3, y3, x2z ` xyw ` y2vq

has only three generators, but its resolution has length five:

R = QQ[x,y,z,w,v]; I = ideal (x^3, y^3,x^2*z + x*y*w+y^2*v); C = res I

1 3 8 10 5 1

o34 = R <-- R <-- R <-- R <-- R <-- R <-- 0

0 1 2 3 4 5 6

In fact, for each N there are examples of ideals I with three generators whose resolution has length N .
However, if we look at all of our examples so far, they’ve all had a really nice property:

the length of the resolution ď the number of variables in R.

This is the content of Hilbert’s Syzygy Theorem:

Theorem 4.2 (The Hilbert Syzygy Theorem). Let I be an ideal in R “ Rrx1, . . . , xns. Then there is an
exact sequence of free modules:

0 Ñ Rbn Ñ ¨ ¨ ¨ Ñ Rb1 Ñ RÑ R{I.

Note that the most important part of the above statement is the 0 at the left hand side. We will use
this to achieve our goal of computing the Hilbert series of R{I.

Remark 4.3. We should remark on the proof of the Hilbert syzygy theorem. Hilbert proved this theorem
essentially by developing the notion of a Gröbner Basis, and coming up with a computational. This is
outlined in [1] and also in [4]. There are many technical details, but the main insight is that if we choose
our generators and maps in the right way, then at each stage of the resolution fewer variables will appear,
and then at some point we must run out of variables - and hence our resolution must terminate. We
illustrate this on the next few pages with some examples.



Consider the ideal I “ px2, y3, z4, w5q. The free resolution is below.

1 4

o161 = 0 : R <------------------- R : 1

| x2 y3 z4 w5 |

4 6

1 : R <----------------------------------- R : 2

{2} | -y3 -z4 0 -w5 0 0 |

{3} | x2 0 -z4 0 -w5 0 |

{4} | 0 x2 y3 0 0 -w5 |

{5} | 0 0 0 x2 y3 z4 |

6 4

2 : R <--------------------------- R : 3

{5} | z4 w5 0 0 |

{6} | -y3 0 w5 0 |

{7} | x2 0 0 w5 |

{7} | 0 -y3 -z4 0 |

{8} | 0 x2 0 -z4 |

{9} | 0 0 x2 y3 |

4 1

3 : R <---------------- R : 4

{9} | -w5 |

{10} | z4 |

{11} | -y3 |

{12} | x2 |

1

4 : R <----- 0 : 5

0

Look at the bottom of each column.

• In the first matrix all 4 variables appear in the bottom of a column

• In the second matrix at most 3 variables appear in the bottom of a column

• In the third matrix at most 2 variables appear in the bottom of a column

• In the fourth matrix at most 1 variable appears in the bottom of a column

In general, if R “ Rrx1, . . . , xns Hilbert showed that if you label things carefully, as you go back a step in
the resolution, the number of variables that can appear “in the bottom of a column” goes down by 1. Since
there are only n variables, the resolution must stop after n steps!



Check out the following examples with Macaulay2 to see that this pattern persists. Notice that we have
to use Zrxis to get Macaulay2 to sort things appropriately. The condition we want to confirm is that

• In the first matrix - anything goes

• In subsequent matrices look at the polynomials that occur as bottom-most entries.

• In the second matrix - there is a variable, say xn, such that for each of those bottom-most entries,
there is a term that doesn’t contain xn.

• In the third matrix - there are two variables, say xn, xn´1, such that for each of those bottom-most
entries, they have a term that doesn’t contain xn or xn´1.

• ¨ ¨ ¨

• In the nth matrix - there are n´ 1 variables, say xn, xn´1, . . . , x2 such that for each of those bottom-
most entries, they have a term that doesn’t contain those variables.

• In the pn` 1qst matrix - there are no terms - since we have no variables left!

R = ZZ[x,y,z,w]; I = ideal(x^2, y^3, z^4,w^5); C = res I;

R = ZZ[x,y]; I = ideal schreyerOrder gens ideal(x^10, x^9*y^2,x^7*y^3,x^4*y^4,x*y^5, y^7);

C = res image gens I; netList {gens I, C.dd_1}

R = ZZ[x,y,z,w]; I = ideal(x^2, x*y,y^2, z^2, z*w, w^2); C = res image gens I;

netList ({gens I}|apply(3, i-> C.dd_(i+1)))

R = ZZ[x,y,z,w,v]; I = ideal (x^3, y^3,x^2*z + x*y*w+y^2*v); C = res image gens I;

netList ({gens I}|apply(4, i-> C.dd_(i+1)))

R = ZZ[x,y,z]; I = ideal"x4,x2y,y3,z4"; C = res image gens I;

netList ({gens I}|apply(2, i-> C.dd_(i+1)))



We now close by showing how the Hilbert Syzygy Theorem allows us to compute the Hilbert Series of
R{I (and why it is of the form pptq{p1´ tqn. We first fix the grading so that the maps in our free resolution
preserve degree. Remember that to use Proposition 2.3 and its generalization it was essential that the maps
preserve degree.

4.2 Fixing the Grading

As introduced in the Exercises yesterday, we consider the following:

Definition 4.4. If M is a graded module then we define the module Mp´dq to be the module that is
exactly the same as M except that we’ve adjusted the grading so that

Mp´dqe “Me´d.

Example 4.5. Consider the map RÑ R that is multiplication by x3. This map does not preserve degree.
For instance it induces a map R4 Ñ R7. However, consider that same map but as

¨x3 : Rp´3q Ñ R.

Now this map preserves degree. Indeed, Rp´3qd Ñ Rd. (Convince yourself of this, for instance, but checking
that Rp´3q10 Ñ R10).

Example 4.6. Consider the exact sequence

0 // Rp´4q

»

–

´y2

x

fi

fl

//
Rp´2q
‘

Rp´3q

”

xy y3
ı

// R // 0

Let’s follow some vectors through this sequence and check that these maps preserve degrees. Let’s start
with something on the left in degree 10. Remember that Rp´4q10 “ R6 so we’ll take something like x6.
Then we apply this map and it goes to

„

´x6y
x7



P

Rp´2q
‘

Rp´3q

And indeed, this is again an element of degree 10.
Alternatively, let’s start with a random element of degree 20 in Rp´2q ‘ Rp´3q. Say, something like

py18, x17q, say. Then the next map will send this to

xy19 ` x17y3 P R.

Sure enough this went to something of degree 20.

Proposition 4.7. Let M be an R-module with r generators of degrees d1, . . . , dr. Then the following
surjective map preserves degree:

Rp´d1q ‘ ¨ ¨ ¨ ‘Rp´drq ÑM.

We might choose to write this as
à

j

Rp´jq ÑM

where it is understood that the j’s represent the degrees we need to generate M .
Inductively (and by the Hilbert Syzygy Theorem) this means that if I is any ideal then there exists an

exact sequence that preserves degree:

0 //
à

j

Rp´jqbnj // ¨ ¨ ¨ //
à

j

Rp´jqb2j //
à

j

Rp´jqb1j // R // R{I // 0.



Proposition 4.8. The Hilbert Series of Rp´jq is tj

p1´tqn .

Proof. The Hilbert Series of Rp´jq will be

HSpRp´jqq “
ÿ

dimRp´jqdt
d “

ÿ

dimRd´jt
d “ tj

ÿ

dimRd´jt
d´j “ tjHSpRq “

tj

p1´ tqn
.

Finally, we are ready to prove our main theorem:

Theorem 4.9. If R “ Rrx1, . . . , xns and I is an ideal, then there is a polynomial pptq with integer coeffi-
cients such that

HSpR{Iq “
pptq

p1´ tqn
.

Proof. By the previous proposition, we can find a resolution of R{I that preserves degree:

0 //
à

j

Rp´jqbnj // ¨ ¨ ¨ //
à

j

Rp´jqb2j //
à

j

Rp´jqb1j // R // R{I // 0.

Let’s simplify that for a second, and just write:

0 // Fn // Fn´1 // ¨ ¨ ¨ // F1
// F0

// R{I // 0.

The Hilbert series of R{I can be expressed as an alternating sum of the Hilbert Series of the Fi by Exercise
2.3.

HSpR{Iq “
ÿ

p´1qiHSpFiq.

Now each Fi is a sum of things of the form Rp´jq, which has Hilbert series tj{p1´ tqn. Hence HSpR{Iq is
of the form pptq{p1´ tqn.

Explicitly,

HSpR{Iq “
ÿ

i,j

p´1qibijt
j

p1´ tqn
.

Example 4.10. Let I “ px, y, zq Ă Rrx, y, zs. Suppose we want to compute the Hilbert Series of R{I. Well
our first step is going to be to start with

0 Ñ I Ñ RÑ R{I Ñ 0 record: HSpR{Iq “ HSpRq ´HSpIq .

all these maps preserve degree. Now we want to look at the module on the left (that is, I) and find a
minimal generating set. The set px, y, zq does the trick, so let’s now consider

0 // K1
// R2 φ“rx,y,zs

deg 2
// I Ñ 0.

0 // K1
// Rp´1q3

φ“rx,y,zs

preserves deg
// I Ñ 0 .

We will use the second option because if φ preserves degree then we will be able to compute our Hilbert

Series and record: HSpIq “ HSpRp´1q3q ´HSpK1q.



Now what can we say about K1? Well it is the kernel of the map rx, y, zs. So what vectors v P Rp´2q3

will satisfy

rx, y, zs ¨

»

–

f1
f2
f2

fi

fl .

We can quickly see that the following vectors are in K

v1 “

»

–

y
´x
0

fi

fl , v2 “

»

–

z
0
´x

fi

fl , v3 “

»

–

0
z
´y

fi

fl

With a little work, you can show that these elements generated all of the elements in the kernel of φ.
Finally, in what degree do these vectors live in? (They live in K2 - think about why.) Hence we can find a
surjective map Rp´2q3 Ñ K Ñ 0. which gives rise to a short exact sequence

0 // K2
// Rp´2q3

φ2“

»

—

—

–

y z 0
´x 0 z
0 x ´y

fi

ffi

ffi

fl

preserves deg
// K Ñ 0 .

Finally we can calculate the kernel of φ2 and see that it is generated by

w “

»

–

x
y
z

fi

fl .

Which is an element of degree 3.

0 // K3
// Rp´3q1

φ3“

»

—

—

–

x
y
z

fi

ffi

ffi

fl

preserves deg
// K2 Ñ 0 .

And now finally we have that K3 is zero. If we compose all of the maps then we get

0 // Rp´3q1

φ3“

»

—

—

–

x
y
z

fi

ffi

ffi

fl

preserves deg
// Rp´2q3

φ2“

»

—

—

–

y z 0
´x 0 z
0 x ´y

fi

ffi

ffi

fl

preserves deg
// Rp´1q3

φ“rx,y,zs

preserves deg
// R // R{I // 0 .

Example 4.11. Let’s go back to our original staircase example:

I “ px10, x9y2, x7y3, x4y4, xy5, y7q.

We can use Macaulay 2 to get a resolution of R{I:

R = QQ[x,y]; I = ideal(x^10, x^9*y^2,x^7*y^3,x^4*y^4,x*y^5, y^7); C = res I;

netList apply(3, i-> tally degrees C_i); -- this will return the degrees of the generators

+----------------+

o362 = |Tally{{0} => 1} |

+----------------+

|Tally{{6} => 1 }|



| {7} => 1 |

| {8} => 1 |

| {10} => 2 |

| {11} => 1 |

+----------------+

|Tally{{8} => 1 }|

| {9} => 1 |

| {11} => 1 |

| {12} => 2 |

+----------------+

This means that the minimal free resolution of R{I is

0 //

Rp´8q
‘

Rp´9q
‘

Rp´11q
‘

Rp´12q2

//

Rp´6q
‘

Rp´7q
‘

Rp´8q
‘

Rp´10q2

‘

Rp´11q

// R // R{I // 0.

So this means that the Hilbert Series of R{I is

HSpR{Iq “
1´ t6 ´ t7 ´ t8 ´ 2t10 ´ t11 ` t8 ` t9 ` t11 ` 2t12

p1´ tq2

4.3 The last section

Where to go from here:

• As we said above, the computational proof of the Hilbert Syzygy Theorem we have hinted at can be
made rigorous e.g. by looking at [1, 4].

• If that proof still leaves something to be desired, and you’d like to go deeper as to how homological
tools might help offer a “nicer” proof. Then you might want to continue learning more homological
algebra, perhaps from the text Computational Algebraic Geometry [5] by Hal Schenck. The following
quote from Hal Schenck maybe sums it up best:

I asked the professor what good Tor was; the answer that Tor is the derived functor of tensor product
did not grip me. When I complained to my advisor, he said “Ah, but you can give a two line proof
of the Hilbert syzygy theorem using Tor - go figure it out”.



4.4 Exercises for Day 4

Exercise 1. By hand, calculate a free resolution of R{I that preserves degree in the case that R “ Rrx, ys
and I “ px2, xy2q. (Hint: you may have computed the kernel yesterday). Write your resolution using Rp´jq
notation and use it to calculate HSpR{Iq. Does your answer match the procedure:

HSpR{Iq “

1´
ÿ

lower steps

tdeg. step `
ÿ

upper steps

tdeg. step

p1´ tq2
(4.1)

Exercise 2. Repeat Exercise 1 with a different ideal, perhaps something like I “ px3, x2y, xy2, y3q.

• The staircase has 4 lower steps (your four generators)

• The staircase has 3 upper steps (which will correspond to your four generators of the kernel) in

0 Ñ K Ñ R4 Ñ I.

• Write down these kernel elements, and your resolution and verify that the degrees are what they
should be.

Exercise 3. Suppose that the Hilbert Series of R{I is equal to

fptq

p1´ tqd

where this fraction is written in lowest terms. Then the dimension of the corresponding (affine) geometric
object defined by I will have dimension d. Check this using Macaulay2 on the following examples: (use

hilbertSeries(I, Reduce=>true)

1. I “ py ´ xq Ă Rrx, ys is a line in R2.

2. I “ px` y, z ` yq Ă Rrx, ys is a line in R3.

3. I “ px, y, zq is a point in R3.

4. Let X be the subset of R6 corresponding to all 2ˆ 3 matrices whose rank is ď 1.

X “

"

A “

„

a b c
d e f



, rankA ď 1

*

Discuss with your group what you think the dimension of this object should be - how many degrees
of freedom do you think it has? Now note that A is defined by the vanishing of the 2ˆ 2 minors of A:

I “ pae´ bd, af ´ cd, bf ´ ceq.

Using Macaulay2 compute the Hilbert series of I and determine the dimension of X. Does it match?

5. What do you think about the set of 3 ˆ 3 matrices of rank ď 1? This can be viewed as a subset of
R9. What do you think its dimension is? Check with Macaulay2. The command dim I will return
the dimension of the geometric object associated to I. Check that this agrees with the degree of the
denominator in hilbertSeries(I, Reduced=>true). Try something like this:



R = QQ[x_1..x_9];

A = genericMatrix(R,3,3)

I = minors(2,A)

hilbertSeries(I, Reduce=>true)

dim I

Exercise 4. Now prove that if the Hilbert Series is
fptq

p1´ tqd
then if you expand out the series then the

coefficient of tN for N large will be a polynomial of degree d´ 1. Hint: your solution should use the fact
that this fraction is in lowest terms. It being in lowest terms is equivalent to requiring that fp1q ‰ 0. What
is the leading coefficient?

Exercise 5. (Open Problem) A nˆn magic square with magic number d is an nˆn matrix with nonnegative
entries whose rows and columns all sum to d. For instance,

¨

˝

2 7 6
9 5 1
4 3 8

˛

‚

is a 3 ˆ 3 magic square with magic number 15. Let Mpn, dq denote the number of n ˆ n magic squares
with magic number d. Richard Stanley proved that if you fix n then Mpn, dq is a polynomial in d of degree
pn´ 1q2.

1. If n “ 1 then explain why Mp1, dq “ 1 for all d. (This is polynomial of degree 02.)

2. By hand you should be able to guess a formula for Mp2, dq. (It should be a polynomial of degree 12.)

3. Mp3, dq “ 1
8pd

4 ` 6d3 ` 15d2 ` 18d` 8q.

4. Now for general n: let R “ Rrx1, . . . , xn!s (yes, n!). Then there is an ideal I in R such that

Mpn, dq “ HFR{Ipdq.

That is, this magic-square-counting-function is just the Hilbert function of some ring R{I. As such
you know by our work this week that the generating function for Mpn, dq is rational

ÿ

Mpn, dqtd “
hptq

p1´ tqpn´1q2`1

if you’d like to explore, check out the Macaulay2 code I wrote that will generate the ideal I for you. I
think in general it is not known what sorts of numbers show in in the Hilbert function. Or what this
polynomial pptq is!

5. See http://www-math.mit.edu/~rstan/transparencies/durer and http://www2.math.uu.se/~qimh/

Magic.pdf for more information.

http://www-math.mit.edu/~rstan/transparencies/durer
http://www2.math.uu.se/~qimh/Magic.pdf
http://www2.math.uu.se/~qimh/Magic.pdf


--- Magic Squares Code

magicSquareIdeal = (n)->(

A = (permutations entries id_(ZZ^n))/matrix;

M = first A;

R = ZZ/101[x_(0,0)..x_(n-1,n-1)];

Phi=apply(A, M-> (

p = 1;

for i from 0 to n-1 do (

for j from 0 to n-1 do (

if M_(i,j) != 0 then p =p*(x_(i,j));

);

);

p));

S = ZZ/101[y_1..y_(n!)];

I = ker map(R,S, Phi)

)

I = magicSquareIdeal 4

apply(10, i-> hilbertFunction(i, I))

hilbertSeries(J, Reduce=>true)

Exercise 6. Draw the projective plane RP2 by drawing a circle and identify opposite sides antipodally.
Sonja’s notes have a great picture. By introducing points on the circle and interior, draw a triangulation of
RP2. This means that you will split the surface into triangles such that the triangles all have three distinct
vertices and that those vertices determine (at most) one triangle. (Hint: Label your vertices a, b, c, d, e, f).

• Now that you have your triangles, write down the set of squarefree degree three monomials that do not
correspond to any triangle. Let I be the ideal that these generate. This is called the Stanley-Reisner
Ideal of this triangulation.

• Input this ideal into Macaulay2 using the commands:

R = QQ[a,b,c,d,e,f]

I = ideal"abc,def,???"

codim I, betti res I

• Work out the Hilbert Series of R{I using HilbertSeries(I, Reduce=>true). You’ll find that

HSpR{Iq “
1` 3T ` 6T 2

p1´ T q3

The numerator is called the h-polynomial, for “Hilbert”. Note that

1` 3T ` 6T 2 “ 6pT ´ 1q2 ` 15pT ´ 1q ` 10.

The coefficients on the right p6, 15, 10q are called the f-vector, for “face.” Notice that your picture
has 6 vertices, 15 edges and 10 triangles.

Note: When inputting an ideal you can either type x^2*y^3+3*x*y with the carats and stars. Or else you
can input ideal"x2y3+3xy".



5 Miscellaneous Exercises

Exercise 7. We say that an ideal I is prime if when fg P I, either f P I or g P I. Prove that the following
ideals are prime in Crx, y, zs

1. pxq

2. px, y ´ 2q

3. px2 ´ yzq

Exercise 8. If I is an ideal in R then the quotient ring R{I is the ring which is best thought of as follows:
The elements are all of the form r for r P R and the ring operations are exactly what you think they are:

r ` s “ r ` s

r ¨ s “ rs.

Finally (and this is the tricky part) we define r “ s if r ´ s P I. In other words, r and s can be equal even
if r ‰ s.

Suppose that I “ px2 ` 1q in Rrxs.

1. Prove that x2 “ ´1

2. Prove that x3 ` 3x “ 2x

3. Prove that x4 “ 1

4. Show that for every polynomial f P Rrxs there are a, b P R such that

f “ ax` b.

Exercise 9. Let I “ px2, y3, z4q Ă Crx, y, zs. Show that R{I is a finite dimensional vector space over C.
What is the dimension of this space? Write down a basis.

Exercise 10. A commutative ring R is called an integral domain if the following implication is true:

f, g P R, fg “ 0 ùñ f “ 0 org “ 0.

1. Prove that Z{6Z is not an integral domain.

2. Prove that Z{7Z is an integral domain.

3. Prove that I Ă R is a prime ideal if and only if R{I is an integral domain.

4. Prove that I “ px ´ 1, y ´ 2, z ´ 3q is a prime ideal in R “ Crx, y, zs by explaining why R{I is
isomorphic to C.

The last part of the last exercise is a prototypical example of the following idea that comes up all the
time in algebra.

Find a map. Make it surjective. Compute the kernel. Quotient out and you get an isomorphism! Indeed,
if

φ : RÑ R

is a surjective homomorphism of rings then

R{ kerφ – R.

This is so important it’s called the First Isomorphism Theorem.



Exercise 11.

1. Prove the first isomorphism theorem.

2. Explain how the first isomorphism theorem implies the following: if

φ : RÑ S

is any homomorphism of rings then

R{ kerφ – imφ.

3. Let α1, . . . , αn P k be arbitrary scalars. Prove that

Rrx1, . . . , xns{px1 ´ α1, . . . , xn ´ αnq – k

as follows:

• First define a map φ : Rrx1, . . . , xns Ñ k by defining φpfq “ fpα1, . . . , αnq. That is, φ is the
evaluation map.

• Check that kerφ “ px1 ´ α1, . . . , xn ´ αnq. (This may require a careful division argument...)

• Now apply the first homomorphism theorem.

Exercise 12. (From Artin’s Algebra) Describe the kernel of the following maps

• Rrx, ys Ñ R defined by fpx, yq Ñ fp0, 0q

• Rrxs Ñ C defined by fpxq Ñ fp2` iq

• Zrxs Ñ R defined by fpxq Ñ fp1`
?

2q

• Crx, ys Ñ Crts defined by xÑ t, y Ñ t2,

• Crx, ys Ñ Crts defined by xÑ t, y Ñ t2, z Ñ t3.,

Exercise 13. Let I and J be ideals in a ring R. Show that I Y J is not necessarily an ideal. However, if
we define

I ` J “ tr P R : r “ i` j, for i P I and j P Ju

then show that I ` J is an ideal of R.
Similarly, the product of two ideals I and J is defined to be the ideal generated by all products fg for

f P I and g P J .

Exercise 14. Let I and J be two ideals in a ring R such that I ` J “ R. Prove that IJ “ I X J



Exercise 15. Work out some of the following “staircases” using the techniques above to verify that the
number of dots under the staircase is given by Equation 4.1.

1. Take the points p2, 0q, p1, 1q, p0, 2q

2. Take the points p3, 0q, p2, 1q, p1, 2q, p0, 3q

3. Take the points pn, 0q, pn´ 1, 1q, . . . , p1, n´ 1q, p0, nq

4. Take the points p2, 0q, p0, 2q

5. Take the points p3, 0q, p0, 3q

6. Take the points pn, 0q, p0, nq

7. Take the points p4, 0q, p2, 2q, p0, 4q.

Exercise 16. Determine whether the following sequence is exact:

0 // V
φ //// V // 0.

where V is R3 and φ is the matrix
»

–

1 0 ´1
´1 1 0
0 ´1 1

fi

fl

Exercise 17. Check that R{px1, . . . , xnq is isomorphic to k (in other words the only thing left are the
constant polynomials). Use this to conclude that

HSpR{px1, . . . , xnqq “ 1` 0t` 0t2 ` ¨ ¨ ¨ . “ 1.

Finally conclude that

HSppx1, . . . , xnqq “
1

p1´ tq2
´ 1.

Exercise 18. Prove in fact that every ideal in Rrxs has exactly one generator, namely the gcd of all the
polynomials in the ideal. We call Rrxs a principal ideal domain since every ideal in Rrxs is principal.
Warning Warning Warning: this is very much false if there is more than one variable.

Exercise 19. Dickson’s Lemma says that any ideal in Rrx1, . . . , xns generated by monomials must be
generated by finitely many of those monomials. Try proving this for n “ 1, 2, 3. (or in general if you like.)
You should notice that n “ 3 is considerably harder than n “ 2.

Exercise 20.

• Every module M has a zero element defined by the property that 0`m “ m for all m PM . Use this
to prove that if φ is a linear map of modules then φp0q “ 0.

• Suppose that N is any module and φ : R Ñ M is a linear map of modules. Then show that φ is
determined by where it sends 1. That is, if you know that φp1q “ m then find a formula for φpfq for
any polynomial f P R.

• Let I “ px, yq be the ideal generated by x and y and R “ Rrx, ys. Show that there is no module map
φ : I Ñ R2 that satisfies φpxq “ px, 0q and φpyq “ p0, yq.

Exercise 21. Prove that if φ : Rr ÑM then kerφ is finitely generated.



Exercise 22. Suppose that the following sequence of maps is commutative meaning that now matter
how you move through the arrows, the result will be the same, e.g. γpfpxqq “ gpαpxqq for each x P A.

0 // A
α //

f
��

// B
β //

g

��

C

h
��

// 0

0 //M
γ //// N

δ // P // 0.

If the two rows are exact sequences prove that there is an exact sequence

0 // ker f
α // ker g

β // kerh
φ //M{ impfq

γ // N{ impgq
δ // P { imphq // 0

Warning: This exercise is what is called a “diagram chase”. It has a bazillion parts, and the reader is
encouraged to perhaps begin by trying to figure out how the map φ might be defined. Indeed, if you take
x P kerh how on earth could you map it to something in M{ impfq.

Exercise 23. Suppose that M is a finitely generated R-module. Show that M is Noetherian. That is,
show that any submodule is finitely generated. Hint: try to use 3.9.

Exercise 24. Let I “ pxy, yz, xzq. Compute HSpMq with M “ R{I and M “ I.
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