MATH 1260 - MIDTERM \#1

\square

- You have 50 minutes to do this exam.
- No calculators!
- You may have one 3×5-card of notes
- For justifications, please use complete sentences and make sure to explain any steps which are questionable.
- Good luck!

Problem	Total Points	Score
1	15	
2	15	
3	10	
4	15	
EC	5	
Total	55	

1. A) True or False (3 points each)
(a) The cross product of two unit vectors in \mathbb{R}^{3} is a unit vector.
(b) If \mathbf{u} and \mathbf{v} are nonparallel vectors in \mathbb{R}^{3} then up to scalar multiplication, $\mathbf{u} \times \mathbf{v}$ is the ONLY vector perpendicular to both u and v.
(c) The function $f(x, y)=\sin x y+y^{2}$ is an example of a function $f: \mathbb{R}^{1} \rightarrow \mathbb{R}^{3}$.
(d) If $f(x, y)$ is differentiable and $\nabla f(a, b)=\mathbf{0}$, then the graph of $z=f(x, y)$ has a horizontal tangent plane at (a, b).
(e) The function $f(x, y)=\sqrt[3]{x^{2}+y^{4}}$ has a global minimum value at the origin. (Hint: No Computation Needed)
2) Short answer (5 points each)
(a) Write an equation of a tangent plane at the point $(1,1,1)$ of the surface $z=3 x^{2}-4 y^{2}+x y+1$.
(b) In what direction is $f(x, y)=9 x^{4}+4 y^{2}$ increasing most rapidly at $(1,2)$? (You can just give a vector it need not be a unit vector)
(c) Does $\lim _{(x, y) \rightarrow(0,0)} \frac{x-y}{x+y}$ exist? Explain your reasoning.

3 a) (5 points) Suppose a differentiable function satisfies

$$
\frac{\partial f}{\partial x}=e^{-x^{2}}, \quad \frac{\partial f}{\partial y}=\cos y
$$

and that $x=r \cos \theta$ and $y=r \sin \theta$. Calculate $\frac{\partial f}{\partial r}$ and $\frac{\partial f}{\partial \theta}$ in terms of x, y, r and θ.
b) (5 points) Explain why there is no differentiable function $f(x, y)$ with continuous second partial derivatives that satisfies

$$
\frac{\partial f}{\partial x}=\sin y, \quad \frac{\partial f}{\partial y}=\cos x
$$

If you tried to find the function $f(x, y)$ in part (a), I bet you failed because $e^{-x^{2}}$ does not have an antiderivative in terms of elementary functions. However, it's true that

$$
\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}
$$

We'll prove this later in the course.
4. A) (7 points) Find the minimum of $f(x, y, z)=4 x-2 y+3 z$ subject to the constraint $2 x^{2}+y^{2}-3 z=0$.
4. B) (8 points) Antoine (the bug) is walking around the $x y$-plane. His position is given by $\mathbf{r}(t)=\langle x(t), y(t)\rangle$ with $x=f(t)$ and $y=g(t)$ as indicated in the graphs below. (Note that the labels on the axes!)

Use these graphs to draw a sketch of the curve $\mathbf{r}(t)$ in \mathbb{R}^{2} and indicate with arrows the direction in which the curve is traced as t increases. What is the velocity vector of the bug at the time $t=0$? Plotting points might help you.

Extra Credit (5 points possible) Let S be the surface defined by $x^{2}+x y-y^{3}+a x+z=2$. Suppose that S contains a curve C whose tangent line at the point $(0,0,-2)$ is parametrized by $(0,0,-2)+t(1,2,3)$. Compute a.

