Math 1260 - Quiz 5

1. (5 Points) Find a formula for the tangent plane to the function $f(x, y)=3 x^{2}+x^{3} y+$ $y \cos (\pi x)$ at the point $(1,3, f(1,3))$. Does the point $(2,4,12)$ lie on this tangent plane? (5 points)

Solution: Note first that $f(1,3)=3+3+3 \cos (\pi)=3 . f_{x}=6 x+3 x^{2} y-y \pi \sin (\pi x)$ and $f_{y}=x^{3}+\cos (\pi x)$. Plugging in $x=1$ and $y=3$ yields

$$
f_{x}(1,3)=6+6-3 \pi \sin (\pi)=9 \text { and } f_{y}(1,3)=1^{3}+\cos (\pi)=1-1=0
$$

Hence the formula for the tangent place is

$$
z=3+15(x-1)+0(y-3) \text { or } z=15 x-12 .
$$

We plug in $(2,4,12)$ and see if we get equality. But we don't since $12 \neq 15(2)-12$.
2. Suppose our intrepid bug has once again found himself on a hot stove. The temperature at position (x, y) is given by the formula

$$
T(x, y)=200+x^{2}-y^{3}+4 y .
$$

Suppose our bug is walking in a direction so as to cool off his tarsal claws (his feet) as quickly as possible. It so happens that this direction is $\mathbf{j}=\langle 0,1\rangle$, the direction of the y-axis. Which of the following locations might the ant be at? (More than one might be possible, and at least one is correct). Justify your answer. (5 points).
(a) $(0,0)$
(b) $(0,3)$
(c) $(-1,1)$
(d) $(0,1)$

Solution: The partial derivatives are $T_{x}=2 x$ and $T_{y}=-3 y^{2}+4$. So our gradiant is $\left\langle 2 x,-3 y^{2}+4\right\rangle$. We want the negative of our gradiant $\left\langle-2 x, 3 y^{2}-4\right\rangle$ to be $\langle 0, K\rangle, K>0$. Hence x must be zero. Thus we can rule out (d). For (a) the negative gradiant is $\langle 0,-4\rangle$ so that's out. For (b) the negative gradiant is $\langle 0,23\rangle$ which is ok. Finally (d) gives negative gradiant $\langle 0,-1\rangle$.

Thus the only possible answer is (b).

