1. (4 points) A) Draw a sketch of the vector field given by $\mathbf{F}(x, y)=\langle 1, y\rangle$. Draw arrows for all points with integer coordinates in the rectangle $-3 \leq x, y \leq 3$. You might be wise to notice a pattern rather than write down 16 values....
(4 points) B) Is $\mathbf{F}=\nabla f$ for some f ? If so, find such an f. If not, explain why.
2. (8 points) A) Compute the divergence and curl of the following vector fields

$$
\begin{aligned}
\mathbf{F}(x, y, z) & =x^{2} \mathbf{i}-2 x y \mathbf{j}+y z^{2} \mathbf{k} \\
\mathbf{G}(x, y, z) & =\cos x \mathbf{i}+\sin y \mathbf{j}+3 \mathbf{k}
\end{aligned}
$$

B) (1 point) We defined curl by using cross products. Remember We only defined cross products for vectors in \mathbb{R}^{3}. So curl only makes sense for vector fields in \mathbb{R}^{3}. Please write "Yes" to indicate that you've read this statement.
3. Parametrizing Curves You're going to become an expert at parametrizing curves over the course of the next few days, so let's get to work.

The easiest shape to parameterize is a straight line from a point \mathbf{P} to \mathbf{Q}. Use the formula

$$
\mathbf{r}(t)=(1-t) \mathbf{P}+t \mathbf{Q}, \quad 0 \leq t \leq 1
$$

A) (1 point) Double check that $\mathbf{r}(0)=\mathbf{P}$ and $\mathbf{r}(1)=Q$. Write "I have checked this, and I understand that writing $0 \leq t \leq 1$ is part of the parametrization."
B) (2 points) Write down the parametrization for a line segment that goes from ($0,0,0$) to $(3,2,1)$.
C) (2 points) Now write down the parametrization for a line segment that goes from $(3,2,1)$ to $(0,0,0)$. This is DIFFERENT than the previous question, and this distinction is oh so very important.
D) (2 points) Now write down a parametrization for the line segment that goes from $(3,2,1)$ to $(4,6,-3)$.
D) (2 points) Now finally write down a parametrization for the line segment that goes from $(4,6,-3)$ to $(0,0,0)$.

You have just written down the parameterization for a triangle with vertices $(0,0,0),(3,2,1),(4,6,-3)$. It has three parts.
E) (2 points) Write down a parameterization for the circle in \mathbb{R}^{2} of radius 3 centered at the origin. Have $\mathbf{r}(0)=(3,0)$.

You should be able to do these parameterizations in your sleep!
4) (12 points) Prove the following formula for a general vector field $\mathbf{F}=(M, N, P)$.

Remember, this just means that M, N, P are the first, second, and third components of \mathbf{F}.
i) $\operatorname{div}(\operatorname{curl} \mathbf{F})=0$;
ii) $\operatorname{curl}(\operatorname{grad} f)=\mathbf{0}$;
iii) $\operatorname{div}(f \mathbf{F})=(f)(\operatorname{div} \mathbf{F})+\nabla f \cdot \mathbf{F}$.

