Worksheet 3 - Derivatives and Tangent Vectors Due Wednesday Sept. 16, 2015

You are greatly encouraged to work on this worksheet in groups - in fact, write down the names of your group members' names, and contact information, so you can get in touch with them after class to finish up this worksheet:

When working on this worksheet go slowly - make sure every member of your group understands what is going on - it's not a race!

This week, we start to properly learn the calculus of functions of more than one variable. In previous calculus courses you have (mostly) studied functions of the form $y=f(x)$. In other words they had a single input " x " and a single output " y ". Since the input and output are both in \mathbb{R} we often write $f: \mathbb{R} \rightarrow \mathbb{R}$. Let's learn what this notation means:

$$
f: X \rightarrow Y
$$

means three things:
(1) f is the name of a function.
(2) f takes inputs in X - called the domain of f.
(3) f has values in Y - called the co-domain of f.

1) Match the following functions with the correct notation: (Hint: Think about what the INPUT and OUTPUT of each function is)

$$
f(x, y)=x^{2}+y^{2} \quad f(x)=\sin x+\cos x \quad f(x)=\left\langle x, x^{2}\right\rangle \quad f(s, t)=\left\langle s^{2}+t^{2}, 2 s t\right\rangle
$$

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \quad f: \mathbb{R}^{1} \rightarrow \mathbb{R}^{1} \quad f: \mathbb{R}^{1} \rightarrow \mathbb{R}^{2} \quad f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{1}
$$

Write down your own formulas for examples of $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{1} \rightarrow \mathbb{R}^{3}$.
2) Sometimes we might even have functions defined on other sets. For instance, the function

$$
\begin{gathered}
h:\{\text { Students in Math } 1260\} \longrightarrow \mathbb{Z} \\
h(A)=\text { age in years of } A
\end{gathered}
$$

is a perfectly fine function. Similarly you could have a silly function like

$$
g:\{\text { US States }\} \longrightarrow\{\text { Colors }\}
$$

$$
g(X)=\text { the favorite color of the state's oldest resident. }
$$

Make up your own function between some interesting sets and write it down.

Sometimes we will define a function not on all of \mathbb{R} (or \mathbb{R}^{2}, etc) but instead just on a subset. For instance, maybe in the function $f(t)=\langle\cos t, \sin t\rangle$ we only allow t to be in the range $[0,2 \pi]$. We could write that as $f:[0,2 \pi] \rightarrow \mathbb{R}$.

As another example, we might say something like: Let I be the interval $(0, \infty)$. We define $f: I \rightarrow \mathbb{R}$ as the function $f(x)=\log x$.

Remember: this is just notation and is meant to be helpful
In class last week we learned about vector-valued functions. These are functions whose values are vectors (as opposed to scalars). For example, the function $\mathbf{f}: \mathbb{R} \rightarrow \mathbb{R}^{3}$ defined by

$$
\mathbf{f}(t)=\left\langle t, t^{2}, t^{3}\right\rangle
$$

is a curve that we can think of as parameterizing the motion of a bug whose position at time t is $\mathbf{f}(t)$. In general, a function $\mathbf{f}: \mathbb{R} \longrightarrow \mathbb{R}^{3}$ is of the form

$$
\mathbf{f}(t)=\langle x(t), y(t), z(t)\rangle
$$

where we call the functions $x(t), y(t), z(t)$ the coordinate functions \mathbf{f}
3) If you had to guess - what to you think the derivative of $\mathbf{f}(t)=\left\langle t, t^{2}, t^{3}\right\rangle$ would be? What about the limit as $t \rightarrow 0$ of $\mathbf{f}(t)$?

Let I be any interval (open or closed or half-open) of \mathbb{R} and $\mathbf{f}: I \rightarrow \mathbb{R}^{3}$ we say that f is differentiable if for every point t in I, the limit

$$
\lim _{h \rightarrow 0} \frac{\mathbf{f}(t+h)-\mathbf{f}(t)}{h}
$$

exists. Whatever this limit is, we denote it by $\mathbf{f}^{\prime}(t)$, the derivative of \mathbf{f}.
4) Now write down the expression $\frac{\mathbf{f}(t+h)-\mathbf{f}(t)}{h}$ when $\mathbf{f}(t)=\langle x(t), y(t), z(t)\rangle$.
5) Now discuss with your group and write a sentence or two explaining why this shows that

$$
\mathbf{f}^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right\rangle
$$

If $\mathbf{f}(t)$ is a vector-valued function, we think of it describing the position of a particle (or bug). Then $\mathbf{f}^{\prime}(t)$ is called the velocity vector. It's magnitude is the speed the particle is moving at time t, and its direction is... the direction the particle is moving. Sometimes we use the letter \mathbf{r} to denote the position function. So we might write $\mathbf{v}(t)=\mathbf{r}^{\prime}(t)$ which says that velocity is the derivative of the position function.
6) Find the speed and direction the particle is moving when $t=\pi / 2$ if $\mathbf{r}(t)=\langle\cos t, \sin t, t\rangle$
7) If t_{0} is a time, then the tangent vector of $\mathbf{r}(t)$ at time t_{0} is defined to be: the vector $\mathbf{r}^{\prime}\left(t_{0}\right)$. Note - this vector is just a direction and a magnitude, so you can think of it as starting at the origin and ending wherever, but it's more helpful to think of it starting at the point $r\left(t_{0}\right)$ on the curve! Draw a picture of the curve from the previous problem and sketch the tangent vector.
8) However, if we talk about the tangent line to a curve, we really do want the line to go through the point. If $\mathbf{r}(t)=\left\langle\sin t, t^{2}, 1-\cos t\right\rangle$ then what is the (parametric) equation of the tangent line at the point when $t=\pi / 3$? (Hint: What was the equation for a line through a point P with direction \mathbf{v} ? No need to simplify or combine the vectors.)
9) Suppose that $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$ is a parameterized curve. We define the function $\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left\|\mathbf{r}^{\prime}(t)\right\|}$. This is called the unit tangent vector. Why do you think it is called this?
10) We will now show that $\mathbf{T}^{\prime}(t)$ is always perpendicular to $\mathbf{T}(t)$. This means that no matter what time t you choose, if you find the vectors $\mathbf{T}(t)$ and $\mathbf{T}^{\prime}(t)$, they will be perpendicular. First, explain why $\|\mathbf{T}(t)\|=1$ implies that $\mathbf{T}(t) \cdot \mathbf{T}(t)=1$.
11) Now use the property (to be discussed in class on Wednesday) that the derivative of $\mathbf{f}(t) \cdot \mathbf{g}(t)$ is equal to $\mathbf{f}^{\prime}(t) \cdot \mathbf{g}(t)+\mathbf{f}(t) \cdot \mathbf{g}^{\prime}(t)$ to show that $\mathbf{T}^{\prime}(t) \cdot \mathbf{T}(t)=0$, and hence that the functions are perpendicular.

