1. (2 points) Find the reduced echelon form of the matrix

$$\begin{pmatrix} 1 & 4 & 0 & 7 \\ 2 & 7 & 0 & 10 \end{pmatrix}$$

2. (3 points) Let
$$\mathbf{u} = \begin{pmatrix} 0 \\ -1 \\ -1 \end{pmatrix}$$
 and $A = \begin{pmatrix} 3 & -5 \\ -2 & 6 \\ 1 & 1 \end{pmatrix}$. Is \mathbf{u} in the span of the columns of A ? Show your work.

3. (1 point each) Short answer (no justification needed). A) If A is a 3×5 matrix then is the product $A \cdot A$ is defined?

B) If A is row equivalent to the matrix $\begin{pmatrix} 1 & 3 & 2 & 7 \\ 0 & 7 & 3 & 6 \\ 0 & 0 & 3 & 3 \end{pmatrix}$, then the equation $A\mathbf{x} = \mathbf{0}$ has how many solutions? (zero, 1, or infinitely many?)

C) Let
$$\mathbf{b} = \begin{pmatrix} 3\\5\\7 \end{pmatrix}$$
 with A as in problem B). Does the equation $A\mathbf{x} = \mathbf{b}$ have at least one solution?

D) If $\mathbf{v} = \begin{pmatrix} 1\\ 0\\ -2 \end{pmatrix}$ then span{ \mathbf{v} } is a set containing infinitely many vectors in \mathbb{R}^3 . (True/False)

E) If the columns of an $m \times n$ matrix A span \mathbb{R}^m , then the equation $A\mathbf{x} = \mathbf{b}$ is consistent for each \mathbf{b} in \mathbb{R}^m .