MATH 2270: QUIZ 3

1. (2 points) Write down the matrix for the transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that first rotates a vector by 90 degrees (counterclockwise) and then flips across the horizontal x_{1}-axis.
2. (4 points) Write down a 2×4 matrix A in echelon form that corresponds to an onto map from $\mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$.

Write down a 3×3 matrix B that is 1 to 1 . Is your B onto as well? Explain why or why not.
3. (1 point each) Short answer (no justification needed).
A) If A is an $n \times m$ matrix that defines an onto linear transformation, then what is the span of the columns?
B) Explain why you can quickly see that the matrix

$$
\left(\begin{array}{ccc}
1 & 2 & 7 \\
2 & 4 & -1 \\
6 & 12 & 0
\end{array}\right)
$$

does not define a 1-1 transformation.
C) If $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ with $T\left(\mathbf{e}_{\mathbf{1}}\right)=2 \mathbf{e}_{\mathbf{2}}$ and $T\left(\mathbf{e}_{\mathbf{2}}\right)=3 \mathbf{e}_{\mathbf{1}}$, write down the matrix for T.
D) With T as in part C can you find the matrix for T^{5} ? i.e, the map that applies T five times? (Hint: You can do it without multiplying matrices...)

