MATH 2270: QUIZ 6

1) a) (1 point) Let A be an $n \times n$ matrix. Define what it means for v to be an eigenvector of A.
b) (1 point) Let λ be an eigenvalue of A. Define what the eigenspace corresponding to λ is.
2) a) (2 points) Find 3 eigenvectors for the matrix $A=\left[\begin{array}{cc}10 & -9 \\ 4 & -2\end{array}\right]$ given that 4 is the only eigenvalue.
b) (2 points) Can you find a basis for \mathbb{R}^{2} consisting of eigenvectors of A ? Why or why not?
3) (2 points) If λ is an eigenvalue of the matrix A, then explain why 3λ is an eigenvalue of the matrix $3 A$.
4) (2 point) If $A^{2}=\left[\begin{array}{lll}1 & 7 & 8 \\ 0 & 2 & 3 \\ 0 & 0 & 9\end{array}\right]$ then what are the possible eigenvalues for A ?
(Extra Credit - pretty hard, but see what you can do) (1 point) Suppose that A is a 3×3 matrix with only one eigenvalue λ. When does \mathbb{R}^{3} have a basis consisting of eigenvectors of A ? I'm looking for a description of the entries of A and an explanation.
