MATH 2270: QUIZ 6

1) a) (1 point) Let A be an $n \times n$ matrix. Define what it means for v to be an eigenvector of A.

b) (1 point) Let λ be an eigenvalue of A. Define what the eigenspace corresponding to λ is.

2) a) (2 points) Find 3 eigenvectors for the matrix $A = \begin{bmatrix} 10 & -9 \\ 4 & -2 \end{bmatrix}$ given that 4 is the only eigenvalue.

b) (2 points) Can you find a basis for \mathbb{R}^2 consisting of eigenvectors of A? Why or why not?

THERE ARE PROBLEMS ON THE BACK

3) (2 points) If λ is an eigenvalue of the matrix A, then explain why 3λ is an eigenvalue of the matrix 3A.

4) (2 point) If
$$A^2 = \begin{bmatrix} 1 & 7 & 8 \\ 0 & 2 & 3 \\ 0 & 0 & 9 \end{bmatrix}$$
 then what are the possible eigenvalues for A ?

(Extra Credit - pretty hard, but see what you can do) (1 point) Suppose that A is a 3×3 matrix with only one eigenvalue λ . When does \mathbb{R}^3 have a basis consisting of eigenvectors of A? I'm looking for a description of the entries of A and an explanation.