MATH 2270: QUIZ 8 (LAST ONE!)

1) a) (2 points) Define what it means for a set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ to be orthonormal.
b) (2 points) Write down two orthonormal bases for \mathbb{R}^{2}.
2) a) (2 points) Compute the orthogonal projection of $\left[\begin{array}{l}1 \\ 7\end{array}\right]$ onto the line through $\left[\begin{array}{c}-4 \\ 2\end{array}\right]$ and the origin.
b) (2 points) Use your answer from part a) to write down an orthogonal basis, $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ for \mathbb{R}^{2} where $\mathbf{b}_{1}=\left[\begin{array}{l}1 \\ 7\end{array}\right]$.
3) (2 points) Find the closest point to \mathbf{y} in the subspace W spanned by $\mathbf{v}_{1}, \mathbf{v}_{2}$.

$$
\mathbf{y}=\left[\begin{array}{l}
3 \\
1 \\
5 \\
1
\end{array}\right], \mathbf{v}_{1}=\left[\begin{array}{c}
3 \\
1 \\
-1 \\
1
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right]
$$

