THE COMPLEX NUMBERS

Some problems from today

(1) Find (and draw in the complex plane) the following when $z=1+2 i$ and $w=3-4 i$.

$$
\bar{z}, \quad z+w, \quad 1 / z, \quad z w, \quad w^{2}, \quad|z|
$$

(2) Multiply the following two matrices together and see if you notice anythign?

$$
Z=\left(\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right), \quad W=\left(\begin{array}{cc}
3 & 4 \\
-4 & 3
\end{array}\right)
$$

(3) Write down the formula for the product of $(a+b i)(c+d i)$ in terms of a, b, c, d. Now compute the product of

$$
Z=\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right), \quad W=\left(\begin{array}{cc}
c & -d \\
d & c
\end{array}\right) .
$$

(4) What is the formula for $(a+b i)+(c+d i)$? What happens when you add the corresponding matrices?
(5) What is the length (absolute value) of $(a+b i)$? Does this quantity mean anything in matrix-land?
(6) What is the formula for the inverse of $(a+b i)$. What matrix would this correspond to?
(7) When you get to this point - let me know and i'll hand you the next part of the worksheet!
(8) You should be convinced that the operations of + and \cdot for complex numbers is the same as that for two by two matrices of the from $\left(\begin{array}{cc}a & -b \\ b & a\end{array}\right)$.
(9) For the moment, let's assume that $z=a+b i$ has length 1 . So we have that $a^{2}+b^{2}=1$. Talk about why this means that $a=\cos \theta$ for some angle t. Now explain why that same angle t has the property that $b=\sin \theta$.
(10) So you now know that your matrix

$$
\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right)=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

for some angle θ. In other words - our complex number $a+b i$ corresponds to that matrix with trig functions! Now for the punchline, see what this matrix does to the vector $\binom{1}{0}$ and the vector $\binom{0}{1}$. Draw a picture of the where each vector starts and finishes. How could you describe what is happening?
(11) What you should have seen is that "multiplying by $a+b i$ " is the same as rotating by θ. Suppose that we have another numbers $c+d i$ with $c^{2}+d^{2}=1$. Then discuss each of these points carefully below

- "multiplying by $a+b i$ " is the same as rotating by some angle θ
- "multiplying by $c+d i$ " is the same as rotating by some angle ϕ
- "multiplying by $a+b i$ and then by $c+d i$ " should be the same as rotating by θ and then rotating by ϕ.
- "So multiplying $(a+b i) \cdot(c+d i)$ " should be the same as rotating by an angle of $\theta+\phi$.
(12) if you truly agree with all of those statements then you must think that

$$
\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right)=\left(\begin{array}{cc}
\cos (\theta+\phi) & -\sin (\theta+\phi) \\
\sin (\theta+\phi) & \cos (\theta+\phi)
\end{array}\right) .
$$

Discuss why this must be.
(13) Finally, multiply the matrices on the left and then equate the entries. You should get some familiar formulas for trig functions.

