MATH 4030 - MIDTERM \#1

\square
Your Name

- You have 80 minutes to do this exam.
- No calculators!
- For justifications, please use complete sentences and make sure to explain any steps which are questionable.
- If not otherwise stated, assume all matrices are $n \times n$.
- Good luck!

Problem	Total Points	Score
1	10	
2	8	
3	12	
4	10	
5	10	
6	10	
EC	3	
Total	60	

Number 1.

- (5 points) Use the Euclidean algorithm to compute gcd $(272,1479)$ (Hint: your answer should be >1)
- (5 points) What is the repeating decimal for $1 / 13$? (Show your work)

Numero 2. You are given that

$$
3=84 \cdot 7-117 \cdot 5
$$

Using this information, you should be able to (without computation) answer the following questions. Hint: If you find yourself doing anything complicated, there's an easier way! No need to show your work (2 points each)

- Find an integer solution (x, y) to the equation $30=84 x+117 y$.

$$
\begin{aligned}
& x= \\
& y=
\end{aligned}
$$

- Find an integer solution (w, z) to the equation $87=84 w+117 z$.
$w=$
$z=$
- Find an integer a so that $[5 a]=[3]$ modulo 84 .
$a=$

\# 3.

(1) (6 points) Prove by induction that the sum of the first n odd numbers is n^{2}. I will check that you clearly set this problem up.
(2) (4 points) Consider the following set $S=\left\{\frac{n}{7}, n \in \mathbb{Z}\right\}$. Are the following statements true or false? Justify your answer.

- If $a, b \in S$ then $a+b \in S$
- If $a, b \in S$ then $a b \in S$

No. 4.
(1) What does it mean for a fraction $\frac{a}{b}$ to be in lowest terms? (4 points)
(2) The following are the 9 equivalence classes in $\mathbb{Z} / 9 \mathbb{Z}$.

- Draw a circle around the additive identity (2 points)
- Draw an X through the multiplicative identity. (2 points)
- Draw an arrow between pairs of elements that are multiplicative inverses of each other (you may need to draw an arrow from an object to itself) (4 points)
(Hint: You might want to start by first writing each class in the familiar way as $[x]$ with $0 \leq x<9$)

$$
\begin{gathered}
{[-3], \quad[17], \quad[4], \quad[3], \quad[19]} \\
{[-2], \quad[5], \quad[9], \quad[2]}
\end{gathered}
$$

5.

(1) (5 points) Does every nonempty subset of the rational numbers have a least element? Justify your answer.
(2) (5 points) (In this problem a, b, and k are integers)

Suppose that $a b$ is divisible by k^{2}. Does this mean that at least one of a or b is divisible by k ? If yes, then prove it. If no, then provide an example.
VI.
(1) (5 points) If $\operatorname{gcd}(a, b)=6$ then explain why a must be even.
(2) (5 points) Explain in words how you could convince someone that the decimal expansion of a rational number is a repeating decimal.

Extra Credit. (3 points) Let n be a positive integer that is NOT a perfect square. Prove that there is no rational number a / b such that $(a / b)^{2}=n$.

