MATH 4030 – MIDTERM #2

Your Name

- You have 80 minutes to do this exam.
- No calculators!
- For justifications, please use complete sentences and make sure to explain any steps which are questionable.
- Good luck!

Problem	Total Points	Score
1	9	
2	11	
3	10	
4	10	
5	10	
6	10	
EC	3	
Total	60	

Number 1.

• (3 points) Let z = 2 - 3i and let $w = (8, 30^{\circ})$. (w is given in polar form). Compute z + w and write the answer in the form a + bi.

• (3 points) What are all solutions x to the equation $x^3 = (8, 30^o)$? (You may write them in polar coordinates)

• (3 points) Let $w = (8, 30^{\circ})$. Compute 1/w write your answer in both polar and standard coordinates.

Numero 2.

(1) (7 points) Consider the following drawing (reproduced twice):

You are given that |z| = 2. Using this information, draw (and label) approximate locations for the following points on the LEFT picture:

$$z^2$$
, \overline{z} , $z+i$, $2z$, $1/z$.

Then on the RIGHT picture, draw all of the 4th roots of z.

(2) (4 points) Let $z = (r, \theta)$ and $w = (s, \phi)$. Write (-1)(z/w) in polar coordinates. (Remember, in polar coordinates, the length is always a positive number!)

3.

(1) (5 points) Explain why every degree 1 polynomial over a field can be written in the form c(x - r). (Hint: Your proof should begin "Let f(x) = ax + b..." and should conclude by clearly saying "here's what c = and here's what r =")

(2) (5 points) In the following list, circle the fields. Draw an X through those sets that have zero divisors:

 $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}/2\mathbb{Z},$

 $\mathbb{Z}/3\mathbb{Z}, \mathbb{Z}/4\mathbb{Z}, \mathbb{Z}/6\mathbb{Z}, \mathbb{Q}[x], \mathbb{C}[x], \mathbb{Z}[i]$

No. 4.

- (1) (3 points) Let F be a field. Define what it means for a polynomial $f(x) \in F[x]$ of degree d to be prime.
- (2) (5 points) Let s = 3 + 4i. Find a number r so that (x s)(x r) is a polynomial with **REAL** coefficients.

- (3) (2 points) In the ring $\mathbb{Z}/2\mathbb{Z}[x]$ which of the following is equal to $(x^2 + x + 1)^2$? (a) $x^4 + x^2 + 1$ (b) $x^4 + x + 1$
 - (c) $x^4 + x^3 + x^2 + 1$ (d) $x^4 + x^2 + 1$

5.

(1) (4 points) Long divide the polynomial $g(x) = x^4 + 2x^2 - 3$ by the polynomial x - 2 in $\mathbb{Q}[x]$. Clearly indicate your remainder.

(2) (4 points) Now in general, suppose that f(x) is a nonzero polynomial. If you divide f(x) by the polynomial x - 2 explain why you know the remainder will always be a constant polynomial c.

VI. (1) (3 points) Why is $\mathbb{Z}/4\mathbb{Z}$ not a field?

(2) (4 points) Find the prime factorization of $x^3 + x^2 + x$ in $F_3[x]$ where F_3 is the field $\mathbb{Z}/3\mathbb{Z}$.

(3) (3 points) Factor 10 into prime factors in the Gaussian integers $\mathbb{Z}[i]$? (Recall $\mathbb{Z}[i] = \{a+bi, a, b \in \mathbb{Z}\}$, and things factor here more than they might in just the usual \mathbb{Z} .)

Extra Credit. (3 points) Suppose I tell you that I am working over a field $F = \mathbb{Z}/p\mathbb{Z}$ where p is some prime number. Further, suppose that I tell you that the prime factorization of $x^4 - x^3 + 3x^2 + 6$ is $(x+2)^2(x^2+2x+5)$. What is p?