MATH 4030 - MIDTERM \#2

\square

- You have 80 minutes to do this exam.
- No calculators!
- For justifications, please use complete sentences and make sure to explain any steps which are questionable.
- Good luck!

Problem	Total Points	Score
1	9	
2	11	
3	10	
4	10	
5	10	
6	10	
EC	3	
Total		

Number 1.

- (3 points) Let $z=2-3 i$ and let $w=\left(8,30^{\circ}\right)$. (w is given in polar form). Compute $z+w$ and write the answer in the form $a+b i$.
- (3 points) What are all solutions x to the equation $x^{3}=\left(8,30^{\circ}\right)$? (You may write them in polar coordinates)
- (3 points) Let $w=\left(8,30^{\circ}\right)$. Compute $1 / w$ write your answer in both polar and standard coordinates.

Numero 2.

(1) (7 points) Consider the following drawing (reproduced twice):

You are given that $|z|=2$. Using this information, draw (and label) approximate locations for the following points on the LEFT picture:

$$
z^{2}, \quad \bar{z}, \quad z+i, \quad 2 z, \quad 1 / z
$$

Then on the RIGHT picture, draw all of the 4th roots of z.
(2) (4 points) Let $z=(r, \theta)$ and $w=(s, \phi)$. Write $(-1)(z / w)$ in polar coordinates. (Remember, in polar coordinates, the length is always a positive number!)

\# 3.

(1) (5 points) Explain why every degree 1 polynomial over a field can be written in the form $c(x-r)$. (Hint: Your proof should begin "Let $f(x)=a x+b \ldots$.." and should conclude by clearly saying "here's what $c=$ and here's what $r=$ ")
(2) (5 points) In the following list, circle the fields. Draw an X through those sets that have zero divisors:

$$
\begin{gathered}
\mathbb{N}, \quad \mathbb{Z}, \quad \mathbb{Q}, \quad \mathbb{R}, \quad \mathbb{C}, \quad \mathbb{Z} / 2 \mathbb{Z}, \\
\mathbb{Z} / 3 \mathbb{Z}, \quad \mathbb{Z} / 4 \mathbb{Z}, \quad \mathbb{Z} / 6 \mathbb{Z}, \quad \mathbb{Q}[x], \quad \mathbb{C}[x], \quad \mathbb{Z}[i]
\end{gathered}
$$

No. 4.
(1) (3 points) Let F be a field. Define what it means for a polynomial $f(x) \in F[x]$ of degree d to be prime.
(2) (5 points) Let $s=3+4 i$. Find a number r so that $(x-s)(x-r)$ is a polynomial with REAL coefficients.
(3) (2 points) In the ring $\mathbb{Z} / 2 \mathbb{Z}[x]$ which of the following is equal to $\left(x^{2}+x+1\right)^{2}$?
(a) $x^{4}+x^{2}+1$
(b) $x^{4}+x+1$
(c) $x^{4}+x^{3}+x^{2}+1$
(d) $x^{4}+x^{2}+1$
5.
(1) (4 points) Long divide the polynomial $g(x)=x^{4}+2 x^{2}-3$ by the polynomial $x-2$ in $\mathbb{Q}[x]$. Clearly indicate your remainder.
(2) (4 points) Now in general, suppose that $f(x)$ is a nonzero polynomial. If you divide $f(x)$ by the polynomial $x-2$ explain why you know the remainder will always be a constant polynomial c.
VI.
(1) (3 points) Why is $\mathbb{Z} / 4 \mathbb{Z}$ not a field?
(2) (4 points) Find the prime factorization of $x^{3}+x^{2}+x$ in $F_{3}[x]$ where F_{3} is the field $\mathbb{Z} / 3 \mathbb{Z}$.
(3) (3 points) Factor 10 into prime factors in the Gaussian integers $\mathbb{Z}[i]$? (Recall $\mathbb{Z}[i]=$ $\{a+b i, a, b \in \mathbb{Z}\}$, and things factor here more than they might in just the usual \mathbb{Z}.)

Extra Credit. (3 points) Suppose I tell you that I am working over a field $F=\mathbb{Z} / p \mathbb{Z}$ where p is some prime number. Further, suppose that I tell you that the prime factorization of $x^{4}-x^{3}+3 x^{2}+6$ is $(x+2)^{2}\left(x^{2}+2 x+5\right)$. What is p ?

