MATH 4030 - MIDTERM \#3

\square

- You have 80 minutes to do this exam.
- No calculators!
- For justifications, please use complete sentences and make sure to explain any steps which are questionable.
- Good luck!

Problem	Total Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
EC	60	
Total		

This page contains helpful information about prime polynomials in $\mathbb{Z}_{2}[x]$ and $\mathbb{Z}_{3}[x]$. You may refer to this during the exam.

- In $\mathbb{Z}_{2}[x]$ the following are the polynomials that are prime with degree less than or equal to 4 :

$$
\begin{gathered}
x, x+1 \\
x^{2}+x+1 \\
x^{3}+x+1, x^{3}+x^{2}+1 \\
x^{4}+x+1, x^{4}+x^{3}+1, x^{4}+x^{3}+x^{2}+x+1
\end{gathered}
$$

- In $\mathbb{Z}_{3}[x]$ the following are the polynomials WITH LEADING COEFFICIENT 1 that are prime with degree less than or equal to 3 :

$$
\begin{gathered}
x, x+1, x-1 \\
x^{2}+1, x^{2}+x-1, x^{2}-x-1 \\
x^{3}-x+1, x^{3}-x-1, x^{3}+x^{2}-1, x^{3}+x^{2}+x-1 \\
x^{3}+x^{2}-x+1, x^{3}-x^{2}+1, x^{3}-x^{2}+x+1, x^{3}-x^{2}-x-1
\end{gathered}
$$

Number 1.

(1) (3 points) According to the rational roots test, what are the possible rational roots of the polynomial $3 x^{4}-5 x^{3}+12 x+6$? (Just list them, you don't need to check whether they are roots.)
(2) (3 points) How many elements are in the field $\mathbb{Z}_{3}[x]_{f(x)}$ if $f(x)=x^{25}+4 x^{2}+6$?
(3) (4 points) What is the multiplicative inverse of 17 in \mathbb{Z}_{31} ?

Numero 2.

(1) (3 points) Calculate the characteristic polynomial of the complex number $\alpha=2 i+3$.
(2) (3 points) Write down two different complex numbers that have the same characteristic polynomial.
(3) (4 points) Calculate the characteristic polynomial of the complex number $\alpha=(1 ; 2 \pi / 6)$.
\# 3. In this problem, say (with explanation) whether the given polynomial is prime in $\mathbb{Q}[x]$. You may use things we've done in class:
(1) (3 points) $f(x)=x^{25}+9 x^{7}-27 x^{5}+3 x^{2}+12 x+3$
(2) (3 points) $g(x)=105 x^{4}+151 x^{3}+25$
(3) (4 points) $h(x)=x^{4}+1$

No. 4.
(1) Consider the polynomial $g(x)=x^{2}+4 x+n$.

- (3 points) For what values of n will $g(x)$ have only real roots? (Your answer should be a equation or inequality involving n)
- (3 points) For what values of n will $g(x)$ have only one root?
(2) (4 points) Find all real and complex roots of the polynomial $x^{3}+2 x^{2}+6 x+5$. (Hint: It has a nice rational root)

5.

(1) (3 points) Define the term algebraic number.
(2) (3 points) True or False: If $f(x)$ is prime in $\mathbb{Q}[x]$ then so is $f\left(x^{2}\right)$. If true, give an explanation. If false, provide an example of a polynomial $f(x)$ that is prime, but where $f\left(x^{2}\right)$ is not.
(3) (4 points) If α is a root of $x^{10}-5 x^{8}-10 x^{5}+15$ then is α constructible with ruler and compass? (Hint: Your explanation should use the word "prime" somewhere)
VI.
(1) True/False (no justification needed) (2 points each)

- There a field with 6 elements.
- There a field with 4 elements.
- \mathbb{Z}_{4} is a field.
(2) (4 points) The following polynomials are prime in $\mathbb{Z}_{7}[x]$:

$$
x^{2}-2 x-2, \quad x-1, \quad x^{3}-2 x^{2}-2 x-1, \quad x^{2}-2 x+3 .
$$

Use this information to write down a field with 49 elements. (Your answer should be in the form $F[x]_{f(x)}$.)

Extra Credit. (3 points) Factor the polynomial $x^{4}+1$ over the real numbers. Hint: it factors as the product of two quadratic polynomials

