FACTORING POLYNOMIALS

Recall that the rational roots theorem says:
If $f(x)=a_{d} x^{d}+a_{d-1} x^{d-1}+\ldots+a_{1} x+a_{0}$ is a polynomial with integer coefficients then the only possible rational roots of $f(x)$ are of the form a / b where a is a factor of a_{0}, and b is a factor of a_{d}.
(1) List the possible rational roots for $f(x)=x^{7}-x^{6}-x^{4}-x^{3}-2 x^{2}-1$ and determine which are actual roots.
(2) What are the possible rational roots for $g(x)=x^{6}+3 x^{4}-12 x^{3}+9 x+3$? Which are actual roots of $g(x)$? (Hint: Use a calculator to check some of these)
(3) Using what you've done above, can you say anything about whether or not $g(x)$ or $f(x)$ factors? What do you think - are they prime polynomials or do they factor?

