FINITE FIELDS

- Recall that a field is a set that has operations + and \times.
- There is a number 0 - the additive identity.
- And a number 1 - the multiplicative identity.
- We require that we can add and subtract and that nonzero elements have multiplicative inverses.
- Remember that we want the operations to be "closed" - in other words if we have x and 1 in our set then $x+1$ had better be in our set as well.
- We also require that fields obey the commutative, distributive and associative properties for + and \times.
(1) Write down some examples of fields on the board - try to write down 3 infinite fields and 3 finite fields.
(2) A few weeks ago, you all wrote down a field with four elements. Was it $\mathbb{Z} / 4 \mathbb{Z}$? No! No! No! It wasn't! $\mathbb{Z} / 4 \mathbb{Z}$ is NOT A field. 2 doesn't have a multiplicative inverse in $\mathbb{Z} / 4 \mathbb{Z}$. If we want a field with 4 elements, we have to come up with DIFFERENT ways of adding and multiplying them.

What you wrote down was a set $\{0,1, \alpha, \alpha+1\}$ that satisfied the rules

$$
\begin{gathered}
1+1=0 \\
\alpha(\alpha+1)=1
\end{gathered}
$$

Expand out this rule and write it as an equation of the form some formula involving $\alpha=0$. Use these rules to explain how to compute $\alpha^{3}(\alpha+1+1+1)$. Your answer should be one of $\{0,1, \alpha, \alpha+1\}$.

What is α^{4} ?
(3) As another example, consider the set $F=\{0,1,2, \beta, \beta+1, \beta+2,2 \beta, 2 \beta+1,2 \beta+1\}$ with the rules

$$
\begin{gathered}
1+1+1=0 \\
\beta^{2}=-1
\end{gathered}
$$

Use these rules to try and figure out what

$$
-1
$$

and

$$
2 \cdot 2
$$

and

$$
\beta+(2 \beta+1)(1-\beta)
$$

and

$$
\beta^{3}
$$

are.
In fact, can you write down a multiplication table for these nine elements? Divide and conquer! I'd like each member of your group to understand how to do these computations? Is this a field?
(4) Let's try another example $F=\{0,1,2, \beta, \beta+1, \beta+2,2 \beta, 2 \beta+1,2 \beta+1\}$ but with a different set of rules:

$$
\begin{gathered}
1+1+1=0 \\
\beta^{2}+\beta+1=0
\end{gathered}
$$

Is this a field? Write out your multiplication table!

