THE INTEGERS

Work with a group of 2 or 3 students discussing the following problems. (Some of these problems appear on the homework this week.)

Some problems from today

We are going to learn a few abstract ideas today. Our goal is to learn how to deal with these abstract settings and gain some confidence. We will be dealing with a S and an operation we call + . This means that given two elements $s, t \in S$ we can assign to them a new element, called $s+t \in S$.
(1) I'll give you some examples of sets S along with some operations. Talk about these. Remember we are giving a "new" definition of + in each case:
(a) $S=\mathbb{N}, n+m:=$ usual sum.
(b) $S=\mathbb{N}, n+m:=n^{m}$
(c) $S=\mathbb{Z}, n+m:=0$ always
(d) $S=\mathbb{Z}, n+m:=n-m$
(e) $S=\{1,2,3,4,5,6,7,8,9,10,11,12\}, n+m:=n+m$ but added like on a clock. E.g. $4+9=1$.
(f) $S=\{$ people $\}, x+y:=x$
(g) $S=\{$ people $\}, x+y:= \begin{cases}\text { the oldest child of } x \text { and } y & \text { if } x \text { and } y \text { have a child } \\ \text { Abraham Lincoln } & \text { otherwise }\end{cases}$

We say that the operation + is associative if for all $s, t, u \in S$

$$
s+(t+u)=(s+t)+u
$$

We say that the operation + is commutative if for all $s, t \in S$

$$
s+t=t+s
$$

(2) Which of the sets and operations above are associative? Commutative?
(3) Let S and + be a set with an addition rule that is associative and commutative. Can you define what you think it means to be an additive identity? Think carefully about this and discuss with your group. You definition should start " $z \in S$ is called an additive identity if ..."
(4) Which of the examples above have an additive identity? If they have one - how many do they have?
(5) Prove that if a set has an additive identity then there is only one.
(6) If S has an additive identity z, and $s \in S$ is an element then it's possible that s could have an additive inverse, which we denote $-s$. How would you define $-s$?
(7) Show that if an element $s \in S$ has an additive inverse then it is unique.
(8) Show that the additive inverse of $-s$ is s.

Looking Forward

- Before Wednesday's class, please (re)read Aaron Bertram's notes on the rational numbers- Section 1.2 .

Warmup As a warmup, let's prove that there are infinitely many prime numbers! Think about the following proof.

Proof:
Assume that there are finitely many prime numbers $\left\{p_{1}, \ldots, p_{k}\right\}$. In other words imagine that that is all the prime numbers. We want to now get a contradiction. If we are successful, then that will mean our assumption had to be incorrect. This is how proof by contradiction works.

Ok, let's do it! Consider the number

$$
N=p_{1} \cdot p_{2} \cdots p_{k}+1 .
$$

In other words, N is the product of all the primes plus 1 .

- Talk about why N is not divisible by p_{1}
- Talk about why N is not divisible by any p_{i}
- Talk about why this means N is not divisible by any prime.
- Talk about why this is a contradiction!

Some Critical Thinking

- Does this mean that N has to be prime? Test this: Try (2) +1 and then $(2)(3)+1$ and then $(2)(3)(5)+1$ etc. Are they all prime?
- What if we modified the above proof and had $N=p_{1} \cdot p_{2} \cdots p_{k}+2$. How would that change your answers above?
- What if we forced you to use $N=$ blah +2 in your proof, how could you fix your proof to still get a contradiction?

