POLYNOMIALS

(1) Consider the following polynomials in $\mathbb{R}[x]$:

$$
f(x)=2 x^{3}-8, \quad g(x)=x^{4}+1, \quad h(x)=x^{2}+x+1
$$

- Compute $f+g, f g$, and $g h$.
- What is the degree of f ? of g ? of h ?
- Can you write down a formula for the degree of the product of two polynomials in $\mathbb{R}[x]$?
- Can you write down a formula for the degree of the sum of two polynomials? (Warning: this is tricky)
(2) Now consider the polynomials in $\mathbb{Z} / 10 \mathbb{Z}[x]$: (Here I will just write c to mean $[c]$. Remember this means that the coefficients are all taken mod 10.)

$$
f(x)=2 x^{3}-8, \quad g(x)=2 x^{4}-2, \quad h(x)=5 x^{2}+x+1
$$

- Compute $f+g, f g$, and $g h$.
- Can you write down a formula for the degree of the product of two polynomials in $\mathbb{Z} / 10 \mathbb{Z}[x]$?
- Why did you get a different answer for $\mathbb{Z} / 10 \mathbb{Z}$ and for \mathbb{R} ?
(3) In a ring, we say that an element a is a zero divisor if $a \neq 0$ and there some $b \neq 0$ such that $a b=0$. Find all the zero divisors in $\mathbb{Z} / 12 \mathbb{Z}$.
(4) Prove that in a field there are no zero divisors. (Hint: The defining property of a field is that EVERY nonzero element has a multiplicitive inverse. In other words if a is nonzero, we can divide an equation by a)
(5) Consider the following statements. Decide whether you think they are going to be true?
- Let F be a field. If $f(x)$ and $g(x)$ are in $F[x]$ and are not zero then $\operatorname{deg}(f g)=\operatorname{deg} f+\operatorname{deg} g$.
- What do you think the degree of the zero polynomial should be?
- Does the polynomial x have a multiplicative inverse in $\mathbb{R}[x]$?
- What about the polynomial $x+1$? What do you think the polynomials that DO have multiplicative inverses are?
- In general (maybe over $\mathbb{Z} / 10 \mathbb{Z}$ if $f(x) g(x)=f(x) h(x)$ can we conclude that $g(x)=h(x)$?

