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Abstract

We provide a method for factoring all bounded ratios of the form

det A(I1|I ′
1) det A(I2|I ′

2)/ det A(J1|J ′
1) det A(J2|J ′

2),

where A is a totally positive matrix, into a product of more elementary ratios each of which is bounded by 1,
thus giving a new proof of Skandera’s result. The approach we use generalizes the one employed by Fallat
et al. in their work on principal minors. We also obtain a new necessary condition for a ratio to be bounded
for the case of non-principal minors.
© 2007 Elsevier Inc. All rights reserved.

AMS classification: 15A45; 15A48
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1. Introduction

Ann×nmatrixA is called totally positive if every minor ofA is positive. If I, I ′ ⊆ {1, 2, . . . , n}
with |I | = |I ′|, we denote the minor of A with row set I and column set I ′ as (I |I ′)(A) :=
det A(I |I ′). If S = ((I1|I ′

1), . . . , (Ip|I ′
p)) is a sequence of p row and column sets, we define a

function S(A) = det A(I1|I ′
1) · det A(I2|I ′

2) · · · det A(Ip|I ′
p). Please note that S(A) > 0 for any

choice of S and for all totally positive matrices A. Similarly, if T = ((J1|J ′
1), . . . , (Jq |J ′

q)) is
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another sequence of q row and column sets, we say that S � T (with respect to the class of totally
positive matrices) if S(A) � T (A) for all totally positive matrices A. Note that if we take the
convention that (∅|∅)(A) = 1, we are free to assume that S and T are both sequences of the same
size (i.e., p = q) by appending an appropriate number of (∅|∅) to the shorter sequence.

It is also reasonable to ask when the ratio S(A)/T (A) is bounded by some k > 0 for all totally
positive matrices A. If this is true, we say that the ratio S/T is bounded by k. It is clear that
S � T if and only if S/T is bounded by 1. It has been conjectured that if S/T is bounded (by
any number), then it is necessarily bounded by 1 (e.g., see [1]).

Recently, the problem of classifying all such ratios and inequalities has been a subject of much
interest. Fallat et al. [2] were able to classify a large class of ratios of products of principal minors.
In particular, they gave necessary and sufficient conditions for a ratio of products of two minors
to be bounded over totally positive matrices. This result was later generalized to the case of non-
principal minors by Skandera [3]. In this paper we generalize a necessary condition in [2] to the
case of non-principal minors, and our main result is an explicit factorization of ratios of the form

det A(I1|I ′
1) det A(I2|I ′

2)

det A(J1|J ′
1) det A(J2|J ′

2)

into products of elementary ratios. This in particular implies the result of Skandera describing
bounded ratios of this form. It has been conjectured by Gekhtman that all bounded ratios are
products of these elementary ratios [2].

1.1. Planar networks and totally positive matrices

The relationship between totally positive matrices and directed acyclic weighted planar net-
works is well studied. It was first discussed by Karlin and McGregor in 1959 [4]. For a more
modern presentation, refer to the paper by Fomin and Zelevinsky [5]. In an attempt to keep the
manuscript mostly self-contained, we will present some relevant results from these papers.

A typical directed acyclic weighted planar network is shown in Fig. 1. Note that because the
graph is acyclic, we can stretch the network in an appropriate fashion so that the direction of each
edge is oriented from left-to-right. Furthermore, the network is assumed to have n labeled sources
(on the left) and n labeled sinks (on the right). Both sources and sinks are labeled bottom to top.
Additionally, to each edge of the network we associate a positive weight. In Fig. 1, these weights
are shown as li , dj , or uk . Unmarked weights are assumed to be 1.

Let π be any path running left-to-right from source i to sink j . We define the weight of this
path to be the product of the weights along each edge of the path and denote this as w(π).

Fig. 1. General planar network.
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To each such diagram, we can associate a totally positive matrix A with entries aij given by

aij =
∑

π :i→j

w(π), (1)

where the summation is over all paths π that begin at source i and end at sink j . Formula (1)
establishes a bijection between totally positive matrices and planar networks of the kind depicted
in Fig. 1. This fact is equivalent to Anne Whitney’s Reduction Theorem [6].

Let us define a path family π as a set of non-intersecting paths running from left-to-right
starting at the sources in I and terminating at the sinks in I ′. The weight of such a path family
w(π) is defined to be the product of the weights of each path in the path family. As shown in [7]
the minor with row set I and column set I ′ is

det A(I |I ′) =
∑

π :I→I ′
w(π),

where the summation is over all such possible path families from I to I ′.
Given the row set I and column set I ′, we have found it helpful to follow Skandera [3] in

defining the set I ′′ which encapsulates both I and I ′

I ′′ = I ∪ {2n + 1 − i|i ∈ I ′c} (2)

where I ′c = {1, 2, . . . , n} \ I ′. While this I ′′ may seem cryptic, it has a natural interpretation
if one considers an embedding of totally positive matrices into the totally positive part of the
Grassmannian Gr(n, 2n).

1.2. Grassmannians

In this section we will discuss the real Grassmannian and refer the reader to Section 5.4 of [8]
for more information. Recall that the real Grassmannian Gr(n, 2n) is the set of n-dimensional
subspaces of R2n, i.e.

Gr(n, 2n) = {Real 2n × n matrices of rank n}/GL(n, R),

where we have factored out the action of right multiplication by an invertible n × n matrix.
It is clear that an element � ∈ Gr(n, 2n) does not have a unique matrix representation, but

rather a collection of matrix representatives which are unique up to right multiplication by an
invertible n × n matrix.

If A is a 2n × n matrix representative of �, we can define the Plücker coordinates of � with
respect to A (or more briefly the Plücker coordinates of A) to be the vector of all n × n minors

of the matrix A, i.e. an element of real
(

2n

n

)
-space.

We say an element � ∈ Gr(n, 2n) is totally positive if there exists a matrix representative A of
� such that every Plücker coordinate of A is positive. The totally positive part of the Grassmannian
Gr(n, 2n) is then defined to be

T PGr(n, 2n) = {� ∈ Gr(n, 2n) : � is totally positive}.
If � ∈ T PGr(n, 2n) we say that the standard matrix representative of � is the 2n × n matrix

representative A with lower n × n submatrix equal to⎡
⎢⎢⎣

1
−1

q
±1

⎤
⎥⎥⎦ .
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Note that such a matrix can always be chosen because the lower n × n block of any matrix
representative of � is always of full rank.

Proposition 1. There is a natural bijection:
{Totally positive n × n matrices} ↔ T PGr(n, 2n).

Proof. Let � ∈ T PGr(n, 2n), and let A be its standard matrix representative. We shall denote
the upper n × n submatrix of A as A. Then the relation

det A(I |I ′) = det A(I ′′|(1, 2, . . . , n)),

where I ′′ is defined as in Eq. (2), and the positivity of all Plücker coordinates of A imply that A

is a totally positive matrix.
This same relation allows us to pass from an n × n totally positive matrix A to an element

� ∈ T PGr(n, 2n) by choosing � to be the unique element with standard matrix representative
having A as the upper n × n submatrix. �

With this bijection clearly established we will maintain the convention of using A to represent
a totally positive n × n matrix and A as its corresponding standard matrix representative in
T PGr(n, 2n).

For additional notational convenience, and to distinguish between minors and Plücker coordi-
nates, we will designate index sets representing Plücker coordinates using Greek letters and drop
the bar notation where its meaning is unambiguous. That is, for an index set αj ⊂ {1, 2, . . . , 2n}
of size n, we define

[αj ](A) := det A(αj |(1, 2, . . . , n)). (3)

Unless stated otherwise, all index sets αj in the remainder of the paper will be assumed to be
cardinality n subsets of {1, . . . , 2n}.

If we have a sequence of index sets α = (α1, α2, . . . , αp), we can define the function α(A) as
a product of Plücker coordinates

α(A) =
p∏

i=1

[αi](A),

where A is an n × n totally positive matrix.
If we similarly let β = (β1, . . . , βq) be another sequence of index sets, we write α � β (with

respect to totally positive matrices) if α(A) � β(A) for all n × n totally positive matrices A. We
say that α/β is bounded by k (with respect to totally positive matrices) if α(A)/β(A) � k for all
totally positive matrices A. Note that α � β is equivalent to saying α/β is bounded by 1.

By construction we have [(n + 1, n + 2, . . . , 2n)](A) = 1 for all totally positive matrices A,
and thus in general we will assume that α and β each contain the same number of index sets.

Lastly, when we say

[α1] · · · [αp]
[β1] · · · [βp]

is bounded (resp. bounded by k), we mean that the ratio α/β is bounded (resp. bounded by k)
where α = (α1, . . . , αp) and β = (β1, . . . , βp).
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2. Operations which preserve bounded ratios

Before proving the main theorem in the work of Fallat et al. (see [2]), they developed several
operators that preserved bounded ratios of minors, namely what they called the Complement,
Reversal, Shift, Insertion, and Deletion operators. Of these operators, we will provide generaliza-
tions of the shift and reversal operators. The insertion and deletion operators were not generalized
because they have little applicability to our situation in which the cardinality of each index set
must remain fixed. The complement operator was not studied.

Definition 2 (Cyclic shift). For an index set αj , define a cyclic shift of the elements of αj as

σ(αj ) = {i + 1 mod 2n|i ∈ αj }
which maps i ∈ αj to i + 1 and 2n back to 1.

For a sequence α = (α1, . . . , αp) of index sets, define σ(α) = (σ (α1), . . . , σ (αp)).

Lemma 3. Let A be a n × n totally positive matrix. Then there exists a totally positive n × n

matrix B and a positive constant cA such that

[σ(αj )](B) = cA[αj ](A)

for all index sets αj , where σ is the cyclic shift operator as defined in Definition 2.

In particular, if α = (α1, . . . , αp) and β = (β1, . . . , βp) then α/β is bounded if and only if
σ(α)/σ(β) is bounded.

Proof. Let A be the standard matrix representation of the embedding of A into T PGr(n, 2n) as
discussed in Section 1.2. Enumerate the rows of A as A1, A2, . . . , A2n.

Form the element � ∈ T PGr(n, 2n) which is represented by the matrix C having rows

C = [(−1)n−1A2n; A1; A2; A3; . . . ; A2n−1].
Let B be the standard matrix representation of �, i.e. B = CX for some X ∈ GL(n, R) where
det X > 0.

Then for any index set αj , we have

[αj ](A) = det A(αj |(1, 2, . . . , n))

= det C(σ(αj )|(1, 2, . . . , n))

= det B(σ(αj )|(1, 2, . . . , n)) · det X−1

= [σ(αj )](B) · det X−1,

where B is the totally positive matrix corresponding to �. �

Analogous to the cyclic shift operator is the reversal operator which is described by Fallat et
al. but which behaves differently in this situation of non-principal minors (see [2, §3]).

Definition 4 (Reversal). For an index set αj , define the reversal of the elements of αj as

ρ(αj ) = {(2n + 1) − i|i ∈ αj }.
For a sequence α = (α1, . . . , αp) of index sets, define ρ(α) = (ρ(α1), . . . , ρ(αp)).
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Lemma 5. Let A be a n × n totally positive matrix. Then there exists a totally positive n × n

matrix B and a positive constant cA such that

[ρ(αj )](B) = cA[αj ](A)

for all index sets αj where ρ is the reversal operator as defined in Definition 4.

In particular, if α = (α1, . . . , αp) and β = (β1, . . . , βp) then α/β is bounded if and only if
ρ(α)/ρ(β) is bounded.

We leave the details of the proof to the reader.

3. Necessary conditions for bounded ratios

For i ∈ {1, 2, . . . , 2n}, let fα(i) be the number of index sets in α that contain i. We now give
a generalization of a simple, necessary, but not sufficient condition for a ratio to be bounded
originally described by Fallat et al. (see [2,3]).

Definition 6 (ST0 condition). Let α and β be two sequences of index sets. If fα(i) = fβ(i) for
all i, we say the ratio α/β satisfies the ST0 (set-theoretic) condition.

Proposition 7. Let α = (α1, . . . , αp) and β = (β1, . . . , βp) be two sequences of index sets, with
each set containing the same number of elements. If α/β is bounded for all totally positive
matrices, then the ratio satisfies the ST0 condition.

Proof. Suppose that α/β does not satisfy the ST0 condition. By Lemma 3, we may assume
without loss of generality that fα(1) /= fβ(1).

Let C be any totally positive matrix, for example the matrix arising from Fig. 1 when all
weights are chosen to be 1. Let C be the standard matrix representation of the embedding of C

into T PGr(n, 2n), and enumerate the rows of C as C1, C2, . . . , C2n.
Construct a new element in T PGr(n, 2n) which has matrix representative A whose rows are

A = [tC1; C2; C3; . . . ; C2n],
where t is chosen to be a positive indeterminate. (We can think of A as the embedding of A =
diag(t, 1, 1, . . . , 1) × C into T PGr(n, 2n)).

Let αj be any index set. Then either:

• 1 ∈ αj and [αj ](A) = ci t for some positive constant ci ; or
• 1 /∈ αj and [αj ](A) = ci for some positive constant ci .

Thus α(A) is a monomial in t of degree fα(1) and β(A) is a monomial in t of degree fβ(1).
Because we have assumed that fα(1) /= fβ(1), α(A)/β(A) must increase without bound as either
t → 0 or t → ∞ so the ratio is not bounded. �

In order to present another necessary condition for a ratio α/β to be bounded, we first need
to discuss the concept of majorization. The following two definitions and one proposition can be
found in [9].

Definition 8 (Majorization). Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be two non-increasing
sequences of non-negative integers. Then x majorizes y (written x � y) if for each k = 1, 2, . . . , n
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k∑
i=1

xi �
k∑

i=1

yi

with equality if k = n.

Definition 9 (Conjugate sequence). The conjugate sequence to x = (x1, . . . , xn) is given by
x∗ = (x∗

1 , . . . , x∗
x1

) where

x∗
j = |{i : xi � j}|.

Proposition 10. Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be two non-increasing sequences of
non-negative integers. Then x � y if and only if y∗ � x∗.

The following notion of an interval is relied upon in the work of Fallat, Skandera, and others
(see [2,3]). Note that we define an interval slightly differently as contiguous points on a labeled
2n-gon rather than contiguous points on a line segment with 2n vertices, but Lemma 3 shows us
that such a distinction is irrelevant in most cases.

Definition 11 (Interval). A subset L ⊆ {1, 2, . . . , 2n} is called an interval if either L or Lc =
{1, 2, . . . , 2n} \ L has the form {i, i + 1, i + 2, . . . , i + m}.

Unless mentioned otherwise, all intervals L will be assumed to be subsets of {1, . . . , 2n} of
the specified form.

The following definition comes directly from the work of Fallat et al. but is applied to the case
of non-principal minors (see [2, §2]).

Definition 12 (Condition (M)). Let α = (α1, α2, . . . , αp) and β = (β1, β2, . . . , βp) be two se-
quences of index sets. For any subset L of {1, . . . , 2n}, define m(α, L) to be the non-increas-
ing rearrangement of the sequence (|α1 ∩ L|, . . . , |αp ∩ L|). We say that a ratio α/β satisfies
condition (M) if

m(α, L) � m(β, L)

for every interval L.

Remark 13. Condition (M) implies the ST0 condition by choosing the interval L = {j} for
j = 1, . . . , 2n.

Before we show that condition (M) is necessary for a ratio α/β to be bounded, we give some
lemmas which will aid in the proof.

Lemma 14. Let α = (α1, α2, . . . , αp) and β = (β1, β2, . . . , βp) be two sequences of index sets
and L be any interval. If m(α, L) � m(β, L) then m(α, Lc) � m(β, Lc).

Proof. Denote the components of m(α, L), etc. by

m(α, L) = (m1, . . . , mp),

m(β, L) = (m′
1, . . . , m

′
p),

m(α, Lc) = (np, . . . , n1),
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m(β, Lc) = (n′
p, . . . , n′

1).

Since |αj ∩ L| + |αj ∩ Lc| = n, we have mi + ni = m′
i + n′

i = n for all i. Let M = ∑p

i=1 mi =∑p

i=1 m′
i . Then for any index k � p we have

np + np−1 + · · · + np−(k−1) = (n − mp) + · · · + (n − mp−(k−1))

= kn − M + m1 + m2 + · · · + mp−k

� kn − M + m′
1 + m′

2 + · · · + m′
p−k

� n′
p + n′

p−1 + · · · + n′
p−(k−1)

and hence m(α, Lc) � m(β, Lc). �

Thus a ratio α/β satisfies condition (M) if and only if m(α, L) � m(β, L) for all intervals L

with |L| � n.
The following theorem is a direct analog of a theorem of Fallat et al. and is proved in a similar

fashion (see [2, Theorem 2.4]).

Theorem 15. Let α = (α1, α2, . . . , αp) and β = (β1, β2, . . . , βp) be two sequences of index sets.
If the ratio α/β is bounded for all totally positive matrices, then it satisfies condition (M).

Proof. Let α = (α1, α2, . . . , αp) and β = (β1, β2, . . . , βp) be two sequences of index sets such
that α/β is bounded. By Lemmas 3 and 14, it is sufficient to show that m(α, L) � m(β, L) for
all intervals L = {1, . . . , s} with s � n.

Fix s � n and let L = {1, . . . , s}. We then construct totally positive matrices A1, A2, . . . , As

as follows:
Consider the planar network shown in Fig. 2. Define the matrix Ai to be the matrix corre-

sponding to this planar network (see Section 1.1) with weights a1 = a2 = · · · = ai = t where t

is a positive indeterminate and remaining weights ai+1 = · · · = as = 1.
If αi is any index set, then [αi](Ak) is a polynomial in t and has a well-defined degree. In

fact, recalling that [αi](Ak) is the sum of weights of path families with sources at αi ∩ {1, . . . , n}
and sinks at {n + 1, . . . , 2n} \ αi (see Section 1.1), we have deg[αi](Ak) = min(k, |αi ∩ L|) and
hence

deg α(Ak) =
p∑

i=1

deg[αi](Ak) =
p∑

i=1

min(k, |αi ∩ L|).

For α/β to be bounded as t → ∞, we must have that deg α(Ak) � deg β(Ak), i.e.

Fig. 2. Diagram for matrices Ai .
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p∑
i=1

min(k, |αi ∩ L)|) �
p∑

i=1

min(k, |βi ∩ L|)

for each 1 � k � s.
Note that if m∗(α, L) = (m∗

1(α, L), m∗
2(α, L), . . .) is the conjugate sequence to m(α, L) we

recognize the left side of the inequality as

p∑
i=1

min(k, |αi ∩ L)|) =
k∑

j=1

|{i : |αi ∩ L| � j}| =
k∑

j=1

m∗
j (α, L).

and similarly for the summation with β.
Since this inequality holds for all 1 � k � s with equality when k = s by the ST0 condition (see

Proposition 7), we have that m∗(α, L) � m∗(β, L) and hence m(α, L) � m(β, L) as desired. �

4. Basic and elementary bounded ratios

In this section we define two special classes of ratios of the form

[α1][α2]
[β1][β2] ,

where the α1, α2, β1, and β2 are index sets. In particular, ratios belonging to either of these classes
will be bounded by 1.

Let αi be an index set. If αi = γ1 ∪ · · · ∪ γn then the notation [γ1, . . . , γn] should be interpreted
as [αi]. Furthermore, if γi consists of only a single element j , then we may simply write j instead
of γi .

Definition 16. An elementary ratio is a ratio of the form

[i, j ′, �][i′, j, �]
[i, j, �][i′, j ′, �]

satisfying

(1) |�| = n − 2;
(2) i < i′ < j < j ′ when considering each element as the mod 2n representative in {i, i +

1, . . . , i + 2n − 1}; and
(3) i, i′, j , and j ′ are not elements of �.

Proposition 17. A ratio R of the form

[i, j ′, �][i′, j, �]
[i, j, �][i′, j ′, �]

with |�| = n − 2, � ∩ {i, i′, j, j ′} = ∅ and i, i′, j, j ′ pairwise distinct is elementary if and only
if it satisfies condition (M).

Proof. Suppose the ratio R is elementary, and let L be any interval. Set α1 = {i, j ′} ∪ �, α2 =
{i′, j} ∪ �, β1 = {i, j} ∪ �, and β2 = {i′, j ′} ∪ �, so that R = [α1][α2]/[β1][β2].
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Because R satisfies the ST0 condition by construction, it suffices to verify that

max(|α1 ∩ L|, |α2 ∩ L|) � max(β1 ∩ L|, |β2 ∩ L|)
or equivalently

max(|{i, j ′} ∩ L|, |{i′, j} ∩ L|) � max({i, j} ∩ L|, |{i′, j ′} ∩ L|)
noting that |� ∩ L| appears in every term and thus may be omitted. We verify this last inequality
by considering the possible values for the right hand side.

If the right hand side is 0, the inequality is trivially satisfied.
If the right hand side is 1, the interval L contains at least one of i, i′, j , or j ′ and thus the left

hand side is at least 1.
If the right hand side is 2, the interval L contains either i and j , or i′ and j ′. Assume for the

moment that L contains both i and j . Then because R is an elementary ratio it must be that the
interval L also contains either i′ or j ′ (or possibly both), and hence the left hand side is 2. Similar
reasoning holds if L had instead contained i′ and j ′.

Conversely, suppose that the ratio R satisfies condition (M). Consider the two intervals L =
{i, i + 1, . . . , j} and L′ = {j, j + 1, . . . , i}, working with the elements modulo 2n as required.
Because R satisfies condition (M), it must be that

max(|{i, j ′} ∩ L|, |{i′, j} ∩ L|) � max({i, j} ∩ L|, |{i′, j ′} ∩ L|) = 2

and hence either i′ or j ′ lies in L. Additionally, upon consideration of the complementary interval
L′, we see that

max(|{i, j ′} ∩ L|, |{i′, j} ∩ L|) � max({i, j} ∩ L|, |{i′, j ′} ∩ L|) = 2

and hence either i′ or j ′ lies in L′. Thus working modulo 2n and considering representatives in
{i, i + 1, . . . , i + 2n − 1}, we have either i < i′ < j < j ′ or i < j ′ < j < i′. In the first case the
ratio is elementary. In the latter case, a simple renaming i ↔ j ′ and i′ ↔ j preserves the ratio
and makes it elementary. �

Remark 18. All elementary ratios are necessarily bounded by 1. Indeed, the short Plücker relation

[i, i′, �][j, j ′, �] + [i, j ′, �][i′, j, �] = [i, j, �][i′, j ′, �] (4)

together with the positivity of all Plücker coordinates over T PGr(n, 2n) imply

[i, j ′, �][i′, j, �] < [i, j, �][i′, j ′, �]
as desired.

Computationally the elementary ratios are inefficient due to the large number of them. The
solution to this problem is to consider instead a small subset of the elementary ratios, which we
will call the basic ratios. We will show that every elementary ratio can be written as a product of
positive powers of basic ratios. We will use this fact in the next section.

Definition 19. A basic ratio is one of the form
[i, j + 1, �][i + 1, j, �]
[i, j, �][i + 1, j + 1, �] ,

where i, j ∈ {1, . . . , 2n} and � ⊂ {1, . . . , 2n} such that |�| = n − 2 and i, i + 1, j , j + 1 and �
are all distinct. Here indices i + 1 and j + 1 are understood mod 2n.
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Clearly, a basic ratio is an elementary ratio with i′ = i + 1, and j ′ = j + 1.
We define the complexity of a particular elementary ratio

R = [i, j ′, �][i′, j, �]
[i, j, �][i′, j ′, �]

as

μ(R) = |� ∩ ({i, i + 1, . . . , i′} ∪ {j, j + 1, . . . , j ′})|.
To prove that every elementary ratio can be written as a product of basic ratios, we first consider

the following special case.

Lemma 20. An elementary ratio R with complexity μ(R) = 0 can be written as a product of
basic ratios.

Proof. We define

δ(R) = |{i, i + 1, . . . , i′} ∪ {j, j + 1, . . . , j ′}|.
Recall that R is a basic ratio if i′ = i + 1 and j ′ = j + 1, or in other words δ(R) = 4. We

proceed by induction.
Assume that when μ(R) = 0 and δ(R) = 4, 5, . . . , k − 1 we have a factorization of ratio R

into a product of basic ratios.
Now consider a given elementary ratio R with μ(R) = 0 and δ(R) = k > 4. It cannot be the

case that both i′ = i + 1 and j ′ = j + 1 as δ(R) > 4. Without loss of generality, assume that
i + 1 /= i′ (otherwise exchange the labels of i and i′ with j and j ′ respectively).

Now the elementary ratio R factors as

[i, j ′, �][i′, j, �]
[i, j, �][i′, j ′, �] =

( [i, j ′, �][i + 1, j, �]
[i, j, �][i + 1, j ′, �]

) ( [i + 1, j ′, �][i′, j, �]
[i + 1, j, �][i′, j ′, �]

)
,

where each factor F on the right hand size has μ(F) = 0 and δ(F ) < k. By induction, each factor
on the right hand side can be expressed as a product of basic ratios. Hence R can we written as a
product of basic ratios. �

Theorem 21. Every elementary ratio can be written as a product of basic ratios.

Proof. We shall proceed by induction on μ(R). By the previous lemma, when μ(R) = 0 we
have that R can be expressed as a product of basic ratios. Assume that for any ratio R with
μ(R) = 0, 1, . . . , k − 1 we can express R as a product of basic ratios.

Now consider an elementary ratio R with μ(R) = k > 0. It cannot be the case that both
� ∩ {i, i + 1, . . . , i′} = ∅ and � ∩ {j, j + 1, . . . , j ′} = ∅, so assume without loss of generality
that � ∩ {i, i + 1, . . . , i′} /= ∅ (if not, exchange the labels of i and i′ with j and j ′ respectively).

Let p ∈ � ∩ {i, i + 1, . . . , i′} be the element nearest to i and let �′ = � \ {p}.
The ratio R then factors as

[i, j ′, �][i′, j, �]
[i, j, �][i′, j ′, �] =

( [i, j ′, p, �′][i, i′, j, �′]
[i, j, p, �′][i, i′, j ′, �′]

) ( [i, i′, j ′, �′][i′, j, p, �′]
[i, i′, j, �′][i′, j ′, p, �′]

)
,

where each factor F on the right hand side has μ(F) < k and hence may be written as a product
of basic ratios. �
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5. A factorization of (some) bounded ratios

In this section we give an alternative proof of a necessary and sufficient condition for a ratio
of the form

[α1][α2]
[β1][β2] (5)

to be bounded in terms of the four index sets, α1, α2, β1, and β2. In addition, we will show that
this ratio can be written as a product of elementary ratios.

For the remainder of the section we will assume that R is a ratio of the form [α1][α2]/[β1][β2]
which satisfies the ST0 condition and condition (M). Denote the set of all such ratios by B. We
define

� = α1 ∩ α2 = β1 ∩ β2;
γ1 = (α1 ∩ β1) \ �;
γ2 = (α1 ∩ β2) \ �;
δ1 = (α2 ∩ β2) \ �;
δ2 = (α2 ∩ β1) \ �; and

� = γ1 ∪ γ2 ∪ δ1 ∪ δ2,

so that

R = [α1][α2]
[β1][β2] = [γ1, γ2, �][δ1, δ2, �]

[γ1, δ2, �][δ1, γ2, �] .
(Recall that notationally [γ1, γ2, �]means [γ1 ∪ γ2 ∪ �], and that we necessarily have: |γ1| = |δ1|;
|γ2| = |δ2|; and |γ1| + |γ2| + |�| = n.)

An important property of the ratio R is the number of indices which are not shared by all index
sets comprising the ratio. We shall denote this quantity as

ν(R) = n − |�| = |�|/2.

Before proceeding, we investigate what information ν(R) holds.

Definition 22 (Trivial ratio). We say a ratio [α1][α2]/[β1][β2] is trivial if either

• α1 = β1 and α2 = β2; or
• α1 = β2 and α2 = β1.

Note that a ratio R satisfying the ST0 condition with ν(R) = 0 or 1 is trivial.

Lemma 23. Suppose R ∈ B and ν(R) = 2. Then either

• R is trivial; or
• R is an elementary ratio and can be written as a product of basic ratios.

Proof. If R is not trivial, R must be of the form
[i, j ′, �][i′, j, �]
[i, j, �][i′, j ′, �]
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with |�| = n − 2 and i, i′, j , j ′, and � pairwise distinct. Proposition 17 establishes that R is an
elementary ratio, and hence R may be written as a product of basic ratios by Theorem 21. �

We will eventually show that any ratio R ∈ B with ν(R) � 3 can be factored as R = R1R2
with Ri ∈ B and ν(Ri) < ν(R) for i = 1, 2. In order to do this, we will rely heavily upon the
following definition, simple remark, and technical lemma.

Definition 24 (Interlacing). Suppose (i1, i2, . . . , ik) and (j1, j2, . . . , jk) are two subsequences of
(1, 2, . . . , 2n). Then we say the sequence (is) interlaces the sequence (jt ) if either:

(1) j1 � i1 � j2 � i2 � · · · � jk � ik; or
(2) i1 � j1 � i2 � j2 � · · · � ik � jk .

Remark 25. Suppose the ratio R = [α1][α2]/[β1][β2] satisfies the ST0 condition, and suppose
that β1 \ � interlaces with β2 \ �. Then R automatically satisfies condition (M).

For notational convenience, let g(α1, α2, L) = max(|α1 ∩ L|, |α2 ∩ L|).

Lemma 26 (Technical lemma). Suppose that R ∈ B and we have a factorization of R as

[γ1, γ2, �][δ1, δ2, �]
[γ1, δ2, �][δ1, γ2, �] = [γ1, γ2, �][γ11, δ12, δ2, �]

[γ1, δ2, �][γ11, δ12, γ2, �] · [γ11, δ12, γ2, �][δ1, δ2, �]
[γ11, δ12, δ2, �][δ1, γ2, �]

for some non-empty sets γ11, γ12, δ11, and δ12 where γ1 = γ11 ∪ γ12 and δ1 = δ11 ∪ δ12 such that
|γ11| = |δ11| and |γ12| = |δ12|.

Suppose as well that γ11 ∪ δ12 interlaces with γ12 ∪ δ11.

Then each of the factors

R1 = [γ1, γ2, �][γ11, δ12, δ2, �]
[γ1, δ2, �][γ11, δ12, γ2, �] and R2 = [γ11, δ12, γ2, �][δ1, δ2, �]

[γ11, δ12, δ2, �][δ1, γ2, �]
are elements of B, and ν(Ri) < ν(R) for i = 1, 2.

Proof. Observe that

|γ1 ∩ L| + |δ1 ∩ L| = |(γ11 ∪ δ12) ∩ L| + |(γ12 ∪ δ11) ∩ L|
for all intervals L. This, along with the hypothesis that γ11 ∪ δ12 interlaces with γ12 ∪ δ11, imme-
diately gives

g(γ1, δ1, L) � g(γ11 ∪ δ12, γ12 ∪ δ11, L)

for all intervals L.
Fix an interval L. Then there are three possible cases:

(1) |α1 ∩ L| > |α2 ∩ L|;
(2) |α1 ∩ L| < |α2 ∩ L|; or
(3) |α1 ∩ L| = |α2 ∩ L|.

Suppose case (1) holds. Then since g(α1, α2, L) � g(β1, β2, L) it follows that |γ1 ∩ L| �
|δ1 ∩ L| and |γ2 ∩ L| � |δ2 ∩ L|. However, if g(γ1, δ1, L) � g(γ11 ∪ δ12, γ12 ∪ δ11, L) and |γ1 ∩
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L| � |δ1 ∩ L|, then applying similar reasoning reveals that |γ11 ∩ L| � |δ11 ∩ L| and |γ12 ∩ L| �
|δ12 ∩ L|. Thus the following four inequalities hold:

(i) |γ1 ∩ L| � |δ1 ∩ L|;
(ii) |γ2 ∩ L| � |δ2 ∩ L|;

(iii) |γ11 ∩ L| � |δ11 ∩ L|; and
(iv) |γ12 ∩ L| � |δ12 ∩ L|.

But these preceding inequalities (i)–(iv) imply that both of the ratios

[γ1, γ2, �][γ11, δ12, δ2, �]
[γ1, δ2, �][γ11, δ12, γ2, �] and

[γ11, δ12, γ2, �][δ1, δ2, �]
[γ11, δ12, δ2, �][δ1, γ2, �] ,

satisfy condition (M), for the fixed interval L. Similar analysis holds for cases (2) and (3) when
|α1 ∩ L| � |α2 ∩ L| and is omitted here.

Lastly, note that ν(R1) = ν(R) − |γ11| < ν(R) and ν(R2) = ν(R) − |δ12| < ν(R). �

Lemma 27. Let R ∈ B, and suppose that either

• γ1 and δ1 do not interlace; or
• γ2 and δ2 do not interlace (or both).

Then we may write R = R1R2 for some ratios R1, R2 ∈ B with ν(Ri) < ν(R) for i = 1, 2.

Proof. Without loss of generality, assume that γ1 and δ1 do not interlace. (If instead γ2 and δ2 do
not interlace, interchange the labeling of α1 and α2).

Label the elements of γ1 ∪ δ1 as {i1, i2, . . . , i2m} with i1 < i2 < · · · < i2m, and define γ11 =
γ1 ∩ {i1, i3, . . . , i2m−1}, γ12 = γ1 ∩ {i2, i4, . . . , i2m}, δ12 = δ1 ∩ {i1, i3, . . . , i2m−1}, and δ11 =
δ1 ∩ {i2, i4, . . . , i2m}.

Because γ1 does not interlace with δ1, we have constructed γ11, γ12, δ11, and δ12 to all be
non-empty. In addition, γ11 ∪ δ12 interlaces with γ12 ∪ δ11, thus satisfying the requirements of
Lemma 26. �

We now examine the situation when both γ1 interlaces with δ1 and γ2 interlaces with δ2.

Claim 28 (Agreeable labeling). Let R ∈ B be a ratio satisfying condition (M), and suppose that
γ1 interlaces with δ1 and γ2 interlaces with δ2. Set � = γ1 ∪ γ2 ∪ δ1 ∪ δ2 = {i1, i2, . . . , i2m} with
i1 < i2 < · · · < i2m. Then, up to a possible relabeling of α1 and α2 or β1 and β2, we may assume
that

(1) β1 \ � = γ1 ∪ δ2 = {i1, i3, . . . , i2m−1};
(2) β2 \ � = δ1 ∪ γ2 = {i2, i4, . . . , i2m}; and
(3) i1 ∈ γ1.

We will say that ratio with a labeling satisfying conditions (1)–(3) is agreeably labeled.

Proof. Suppose that either γ1 ∪ δ2 or δ1 ∪ γ2 contained a consecutive pair of elements il, il+1 ∈ �.
It cannot be that this pair lies entirely in one of γ1, γ2, δ1, or δ2, as this would violate the interlacing
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hypotheses. However if il and il+1 lie in different sets, for example γ1 and δ2, consideration of
condition (M) with the interval L = {il, . . . , il+1} again leads to a contradiction.

Thus γ1 ∪ δ2 and δ1 ∪ γ2 contain no consecutive pairs of elements of �, and hence we may
assume (up to relabeling of β1 and β2) that both (1) and (2) hold. Lastly, we may swap the labeling
of α1 and α2 if necessary to ensure that i1 ∈ α1 and hence (3) holds. �

Under this labeling, the element i2 may be in either δ1 or γ2. We investigate each case separately.

Lemma 29. Let R ∈ B with ν(R) � 3, and suppose that both γ1 interlaces with δ1 and γ2 inter-
laces with δ2. Assume that R is agreeably labeled (see Claim 28), and set � = γ1 ∪ γ2 ∪ δ1 ∪ δ2 =
{i1, i2, . . . , i2m} with i1 < i2 < · · · < i2m. Furthermore, assume that i2 ∈ δ1.

Then we may write R = R1R2 for some ratios R1, R2 ∈ B with ν(Ri) < ν(R) for i = 1, 2.

Proof. Because R is agreeably labeled, we know that γ1 ∪ δ2 = {i1, i3, . . .} with i1 ∈ γ1. Define
k � 1 to be the value so that {i1, i3, i5, . . . , i2k−1} ⊆ γ1 and i2k+1 ∈ δ2. Similarly define l � 1 to
be the value so that {i2, i4, . . . , i2l} ⊆ δ1 and i2l+2 ∈ γ2.

To summarize, we have set

γ1 = {i1, i3, i5, . . . , i2k−1, ∗};
γ2 = {i2l+2, ∗};
δ1 = {i2, i4, . . . , i2l , ∗}; and

δ2 = {i2k+1, ∗},
where the use of ∗ is understood to represent the remaining elements and is not the same in each
instance.

Because of the interlacing hypothesis, we must have either

(a) l = k; or
(b) l = k − 1.

For case (a), let γ11 = {i1}, γ12 = γ1 \ {i1} = {i3, i5, . . . , i2k−1, ∗}, δ11 = {i2} and δ12 = δ1 \
{i2} = {i4, . . . , i2l , ∗}.

We claim γ12 ∪ δ2 and δ12 ∪ γ2 interlace, as

γ12 ∪ δ2 = (γ1 ∪ δ2) \ {i1} = {i3, i5, . . . , i2m−1} and

δ12 ∪ γ2 = (δ1 ∪ γ2) \ {i2} = {i4, i6, . . . , i2m}.
Similarly γ11 ∪ δ2 and δ11 ∪ γ2 interlace, as

γ11 ∪ δ2 = {i1} ∪ δ2 = {i1, i2k+1, ∗} and

δ11 ∪ γ2 = {i2} ∪ γ2 = {i2, i2l+2, ∗},
noting l = k and γ2 interlaces with δ2 by hypothesis.

Therefore, we may write

[γ1, γ2, �][δ1, δ2, �]
[γ1, δ2, �][δ1, γ2, �] = [γ1, γ2, �][γ11, δ12, δ2, �]

[γ1, δ2, �][γ11, δ12, γ2, �] · [γ11, δ12, γ2, �][δ1, δ2, �]
[γ11, δ12, δ2, �][δ1, γ2, �] ,
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where both ratios on the right hand side satisfy condition (M) by Remark 25. Labeling the
ratios on the right hand side as R1 and R2 respectively, we see that ν(R1) = ν(R) − |γ11| and
ν(R2) = ν(R) − |γ12|. Now |γ11| = 1, so ν(R1) < ν(R).

If |γ12| � 1 we are finished with this case. If instead |γ12| = 0 we deduce that γ1 = {i1},
γ2 = {i3, i5, . . . , i2m−1}, δ1 = {i2}, and δ2 = {i4, i6, . . . , i2m}. We can then factor R as

[i1, i4, i6, . . . ,�][i2, i3, i5, . . . ,�]
[i1, i3, i5, . . . ,�][i2, i4, i6, . . . ,�] = [i1, i4, i6, . . . ,�][i2, i4, i5, i7, . . . ,�]

[i2, i4, i6, . . . ,�][i1, i4, i5, i7, . . . ,�]
· [i1, i4, i5, i7, . . . ,�][i2, i3, i5, . . . ,�]
[i2, i4, i5, i7, . . . ,�][i1, i3, i5, . . . ,�] ,

where the ellipses indicate the sequence continues with the same parity subscripts. Note that
{i1, i5, i7, . . .} interlaces with {i2, i6, i8, . . .} and that {i1, i3} interlaces with {i2, i4}, hence both
ratios on the right hand side satisfy condition (M) by Remark 25. Labeling the ratios on the right
hand side as R1 and R2 respectively, we see that ν(R1) = ν(R) − 1 < ν(R) and ν(R2) = 2 <

ν(R).
Now we return to case (b), where l = k − 1. Let γ11 = {i3, i5, . . . , i2k−1}, γ12 = γ1 \ γ11,

δ11 = {i2, i4, . . . , i2l}, and δ12 = δ1 \ δ11.
We claim γ12 ∪ δ2 and δ12 ∪ γ2 interlace, as

γ12 ∪ δ2 = (γ1 ∪ δ2) \ {i2, i3, i4, . . . i2l+1} and

δ12 ∪ γ2 = (δ1 ∪ γ2) \ {i2, i3, i4, . . . i2l+1},
noting γ1 ∪ δ2 interlaces with δ1 ∪ γ2 and we have removed a section of consecutive elements of
�.

Similarly, we claim γ11 ∪ δ2 and δ11 ∪ γ2 interlace, as

γ11 ∪ δ2 = {i3, i5, . . . , i2k−1, i2k+1, ∗} and

δ11 ∪ γ2 = {i2, i4, . . . , i2l , i2l+2, ∗},
noting l = k − 1 and γ2 interlaces with δ2 by hypothesis.

Therefore, we may write

[γ1, γ2, �][δ1, δ2, �]
[γ1, δ2, �][δ1, γ2, �] = [γ1, γ2, �][γ11, δ12, δ2, �]

[γ1, δ2, �][γ11, δ12, γ2, �] · [γ11, δ12, γ2, �][δ1, δ2, �]
[γ11, δ12, δ2, �][δ1, γ2, �] ,

where both ratios on the right hand side satisfy condition (M) by Remark 25. Labeling the
ratios on the right hand side as R1 and R2 respectively, we see that ν(R1) = ν(R) − |γ11| and
ν(R2) = ν(R) − |γ12|.

Observe that i2 ∈ δ11 so |δ11| = |γ11| � 1 and hence ν(R1) < ν(R). Similarly, i1 ∈ γ12 so
|γ12| � 1 and hence ν(R2) < ν(R).

This concludes the proof, as we have successfully dealt with both cases (a) and (b). �

Lemma 30. Let R ∈ B with ν(R) � 3, and suppose that both γ1 interlaces with δ1 and γ2 inter-
laces with δ2. Assume that R is agreeably labeled (see Claim 28), and set � = γ1 ∪ γ2 ∪ δ1 ∪ δ2 =
{i1, i2, . . . , i2m} with i1 < i2 < · · · < i2m. Furthermore, assume that i2 ∈ γ2.

Then we may write R = R1R2 for some ratios R1, R2 ∈ B with ν(Ri) < ν(R) for i = 1, 2.
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Proof. First, note that i3 ∈ δ2, since otherwise {i1, i3} ⊂ γ1 and hence γ1 and δ1 would not
interlace.

We consider several possibilities. Suppose first that |γ1| = 1, i.e. γ1 = {i1}. This then forces
δ2 = {i3, i5, . . . , i2m−1}, γ2 = {i2, i4, . . . , i2m−2}, and δ1 = {i2m}. We can then factor R as

R = [i1, i2, i4, . . . , i2m−2, �][i3, i5, . . . , i2m−1, i2m, �]
[i2, i4, . . . , i2m−2, i2m, �][i1, i3, i5, . . . , i2m−1, �]

= [i3, i5, . . . , i2m−1, i2m, �][i1, i3, i4, i6, . . . , i2m−2, �]
[i1, i3, i5, . . . , i2m−1, �][i3, i4, i6, . . . , i2m−2, i2m, �]
· [i3, i4, i6, . . . , i2m−2, i2m, �][i1, i2, i4, . . . , i2m−2, �]
[i1, i3, i4, i6, . . . , i2m−2, �][i2, i4, . . . , i2m−2, i2m, �] ,

where the ellipses indicate the sequence continues with the same parity subscripts. Note that
{i1, i5, i7, . . .} interlaces with {i4, i6, i8, . . .} and that {i1, i3} interlaces with {i2, i4}, hence both
ratios on the right hand side satisfy condition (M) by Remark 25. Labeling the ratios on the right
hand side as R1 and R2 respectively, we see that ν(R1) = ν(R) − 1 < ν(R) and ν(R2) = 2 <

ν(R).
If instead |γ1| > 1, we may define k � 2 to be the value so that {i3, i5, . . . , i2k−1} ⊆ δ2 and

{i1, i2k+1} ⊆ γ1. Similarly let l � 1 be the value so that {i2, i4, . . . , i2l} ⊆ γ2 and i2l+2 ∈ δ1.
Observe that because both γ1 interlaces with δ1 and γ2 interlaces with δ2, we necessarily have
l = k − 1.

Let δ21 = {i3}, δ22 = δ2 \ δ21, γ21 = {i2}, γ22 = γ2 \ γ21.
We claim γ1 ∪ δ21 interlaces with δ1 ∪ γ21, as

γ1 ∪ δ21 = {i1, i3, i2k+1, ∗} and

δ1 ∪ γ21 = {i2, i2l+2, ∗},
noting 2l + 2 = 2k and γ1 interlaces with δ1 by hypothesis.

Similarly, we claim γ1 ∪ δ22 interlaces with δ1 ∪ γ22, as

γ1 ∪ δ22 = {i1, i5, i7, . . . , i2k+1, ∗} and

δ1 ∪ γ22 = {i4, i6, . . . , i2l+2, ∗},
noting 2l + 2 = 2k and γ1 interlaces with δ1 by hypothesis.

Therefore, we may write

[γ1, γ2, �][δ1, δ2, �]
[γ1, δ2, �][δ1, γ2, �] = [γ1, γ2, �][δ1, δ21, γ22, �]

[δ1, γ2, �][γ1, δ21, γ22, �] · [γ1, δ21, γ22, �][δ1, δ2, �]
[δ1, δ21, γ22, �][γ1, δ2, �] ,

where both ratios on the right hand side satisfy condition (M) by Remark 25. Labeling the
ratios on the right hand side as R1 and R2 respectively, we see that ν(R1) = ν(R) − |γ22| and
ν(R2) = ν(R) − |δ21|. Now |δ21| = 1, so ν(R2) < ν(R).

If |γ22| � 1 we are finished. If instead |γ22| = 0, we deduce that γ1 = {i1, i5, i7, . . . , i2m−1},
δ1 = {i4, i6, . . . , i2m}, γ2 = {i2}, and δ2 = {i3}. We can then factor R as

[i1, i2, i5, i7, . . . ,�][i3, i4, i6, . . . ,�]
[i2, i4, i6, . . . ,�][i1, i3, i5, i7, . . . ,�] = [i1, i2, i5, i7, . . . ,�][i3, i5, i6, i8, . . . ,�]

[i1, i3, i5, i7, . . . ,�][i2, i5, i6, i8, . . . ,�]
· [i2, i5, i6, i8, . . . ,�][i3, i4, i6, . . . ,�]
[i3, i5, i6, i8, . . . ,�][i2, i4, i6, . . . ,�] ,
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where the ellipses indicate the sequence continues with the same parity subscripts. Note that
{i1, i3, i7, . . .} interlaces with {i2, i6, i8, . . .} and that {i3, i5} interlaces with {i2, i4}, hence both
ratios on the right hand side satisfy condition (M) by Remark 25. Labeling the ratios on the right
hand side as R1 and R2 respectively, we see that ν(R1) = ν(R) − 1 < ν(R) and ν(R2) = 2 <

ν(R). �

Theorem 31. Let R ∈ B with ν(R) � 3. Then we may write R = R1R2 for some ratios R1, R2 ∈
B with ν(Ri) < ν(R) for i = 1, 2.

Proof. If either γ1 and δ1 do not interlace, or γ2 and δ2 do not interlace, or both we may appeal
to Lemma 27.

If instead both γ1 interlaces with δ1 and γ2 interlaces with δ2, we may assume without loss of
generality that R is agreeably labeled (see Claim 28). Observe that with this labeling i2 ∈ δ1 ∪ γ2.

If i2 ∈ δ1, we may appeal to Lemma 29.
If i2 ∈ γ2, we may appeal to Lemma 30. �

We now state our main result.

Theorem 32 (Main theorem). Let R be a ratio of the form α/β = [α1][α2]/[β1][β2] where
α1, α2, β1, β2 are index sets in {1, . . . , 2n}. The following are equivalent:

(1) R satisfies the ST0 condition and

max(|α1 ∩ L|, |α2 ∩ L|) � max(|β1 ∩ L|, |β2 ∩ L|) (6)

for every interval L ⊆ {1, . . . , 2n}, i.e. α/β satisfies condition (M).

(2) R can be written as a product of basic ratios.
(3) R is bounded by 1.

(4) R is bounded.

Proof Note that (2) ⇒ (3) ⇒ (4) ⇒ (1) are clear, so what remains to show is that (1) ⇒ (2).
By Theorem 31, we may write any ratio R of the specified form satisfying condition (M) with

ν(R) � 3 as a product of ratios R1R2 of the same form where each satisfies condition (M) and
ν(Ri) < ν(R) for i = 1, 2. By Lemma 23 and the remarks directly preceding it, any ratio R of
the specified form satisfying condition (M) with ν(R) � 2 is either trivial or can be written as a
product of basic ratios.

A simple induction argument on the value of ν(R) completes the proof. �

Remark 33. Much of the proof in this section extends similar techniques used by Fallat et al. to
the case of non-principal minors (see [2]). The equivalence of (1), (3) and (4) in Theorem 32 is a
result of Skandera (see [3]).

Remark 34. While we have shown that condition (M) implies boundedness for this specific class
of ratios, this condition is not sufficient in general. For example, the ratio

[1, 2, 3, 8][2, 3, 4, 5][4, 6, 7, 8]
[1, 4, 6, 8][2, 3, 4, 8][2, 3, 5, 7]
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satisfies condition (M) but is unbounded over the class of totally positive matrices. For example,
when applied to the totally positive matrix⎛

⎜⎜⎝
1 3t−1 3t−2 t−1

2 + t−1 1 + 6t−1 + 3t−2 2t−1 + 6t−2 + 3t−3 1 + 2t−1 + t−2

t + 2 t + 4 + 6t−1 3 + 5t−1 + 6t−2 2t + 2 + 2t−1

t t + 3 t + 2 + 3t−1 t2 + t + 2

⎞
⎟⎟⎠ ,

where t is a positive indeterminate, the exhibited ratio increases without bound as t → ∞.

Conjecture 35. A ratio α/β, where α and β are each sequences of an arbitrary number of index
sets is bounded if and only if it can be written as a product of basic ratios.

This conjecture was briefly hinted at by Fallat et al. with regards to a possible way to save a
similar conjecture with respect to bounded ratios of principal minors (see [2, §6]).

6. Computational methods and computational results

Given this collection of basic ratios, a natural question to consider is: What is the set of ratios
generated by products of positive powers of the basic ratios? Every ratio in this space is both
bounded and expressible as a product of basic ratios.

We consider a typical element of this space to be a ratio of products of index sets. Recall there

are N =
(

2n

n

)
such index sets. Then each ratio can be described by giving the power to which

each index set appears in the ratio; terms appearing in the denominator have negative exponent.
This allows us to identify each ratio with a vector in RN where each entry represents the power
to which that index set appears in the ratio. The product of two ratios then simply corresponds to
the sum of their two associated vectors in RN .

We write v1, . . . , vM as the vectors that correspond to each of the

M = n(2n − 3)

(
2n − 4
n − 2

)
basic ratios. Such a list of generating vectors can be easily computed using Mathematica.

The set of all ratios that are products of positive powers of the basic ratios is a polyhedral cone

P =
{

M∑
i=1

λivi

∣∣∣∣λi ∈ R�0

}
.

P can also be described as the intersection of finitely many linear half-spaces, namely

P =
{
x ∈ RN |A · x � 0

}
for some matrix A that can be computed. The software program cdd+ [10] is useful in the
conversion between these two representations of convex polyhedral cones.

We illustrate the utility of this by proving a non-trivial theorem. This result was first obtained
in [1].

Proposition 36. Every bounded ratio of minors of a 3 × 3 totally positive matrix can be written
as a product of positive powers of the basic ratios. Furthermore, every such bounded ratio is
bounded by 1.
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This can be verified computationally by computing the half planes of the cone generated by the
basic ratios and then constructing a matrix in terms of a parameter t that satisfies the inequality
listed above.

As mentioned in [2], one method of determining whether or not a ratio is bounded is to work
with a totally positive matrix corresponding to the diagram in Fig. 1. The entries in this matrix are
then polynomials in the variables li , dj , and uk . It is well known that this matrix will be totally
positive if each variable is chosen to be positive, and all totally positive matrices may be arrived
at by this construction for appropriate choices of the variables.

In this view, a ratio of minors R is a rational function p/q in the same variables. Some
information about the ratiop/q may be gleaned by examining the differenceq − p as a polynomial
in the variables li , dj , and uk . We denote this polynomial by pR . For example, if every coefficient
in pR is positive (we call this ‘subtraction free’) then pR will be positive for any choice of positive
variables li , dj , and uk . This would imply that the ratio p/q is necessarily bounded by 1 over the
class of totally positive matrices.

This suggests the following conjecture, formulated in [2,3]

Conjecture 37. A ratio of minors R is bounded if and only if pR is subtraction free.

In other words, if pR is not subtraction free, we conjecture that it is possible to find a family of
totally positive matrices on which the ratio increases without bound. (It has always been possible
in every ratio that we have examined.) This is significant, because of the existence of polynomials
which remain non-negative but are not subtraction free. (e.g. x2 + y2 − 2xy + 1).

Remark 38. Observe that Conjecture 37 follows from Conjecture 35 and the short Plücker relation
(Eq. (4)). Indeed, the short Plücker relation guarantees that all basic ratios are subtraction free.
This fact extends to arbitrary products of basic ratios, noting that if R = A/B · C/D where both
pA/B and pC/D are subtraction free, then pR = BD − AC = D(B − A) + A(D − C) is also
subtraction free.

Using Mathematica, we considered the set of ratios of the form

[α1][α2][α3]
[β1][β2][β3] (7)

over the class of 4 × 4 totally positive matrices.
Of the ratios satisfying the required ST0 and majorization conditions, we found that approx-

imately 98% could be written as a product of basic ratios. Those that could not be written as a
product of basic ratios were found to be not subtraction free and actually unbounded over the
class of totally positive matrices. The results of these computer experiments can be summarized
in the following proposition.

Proposition 39. For ratios of the form in Eq. (7), the following are equivalent when working over
4 × 4 totally positive matrices:

(1) The ratio is bounded;
(2) The ratio is bounded by 1;
(3) The ratio can be factored into a product of basic ratios; and
(4) The ratio is subtraction free.
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