Publisher: Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3J H, UK

Communications in Algebra

Publication details, including instructions for authors and subscription information: http:// www.tandfonline.com/ loi/ lagb20

Dimensions of Formal Fibers of Height One Prime Ideals

Adam Boocher ${ }^{\text {a }}$, Michael Daub ${ }^{\text {a }} \& 5$ S. Loepp ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, University of California at Berkeley, Berkeley, California, USA
${ }^{\mathrm{b}}$ Bronfman Science Center, Williams College, Williamstown, Massachusetts, USA
Version of record first published: 13 J an 2010

To cite this article: Adam Boocher, Michael Daub \& S. Loepp (2009): Dimensions of Formal Fibers of Height One Prime Ideals, Communications in Algebra, 38:1, 233-253

To link to this article: http://dx.doi.org/ 10.1080/00927870902865886

PLEASE SCROLL DOWN FOR ARTICLE
Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions
This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

DIMENSIONS OF FORMAL FIBERS OF HEIGHT ONE PRIME IDEALS

Adam Boocher ${ }^{1}$, Michael Daub ${ }^{1}$, and S. Loepp ${ }^{2}$
${ }^{1}$ Department of Mathematics, University of California at Berkeley, Berkeley, California, USA
${ }^{2}$ Bronfman Science Center, Williams College, Williamstown, Massachusetts, USA

Let T be a complete local (Noetherian) ring with maximal ideal M, P a nonmaximal ideal of T, and $C=\left\{Q_{1}, Q_{2}, \ldots\right\}$ a (nonempty) finite or countable set of nonmaximal prime ideals of T. Let $\left\{p_{1}, p_{2}, \ldots\right\}$ be a set of nonzero regular elements of T, whose cardinality is the same as that of C. Suppose that $p_{i} \in Q_{j}$ if and only if $i=j$. We give conditions that ensure there is an excellent local unique factorization domain A such that A is a subring of T, the maximal ideal of A is $M \cap A$, the $(M \cap A)$-adic completion of A is T, and so that the following three conditions hold: (1) $p_{i} \in A$ for every i; (2) $A \cap P=(0)$, and if J is a prime ideal of T with $J \cap A=(0)$, then $J \subseteq P$ or $J \subseteq Q_{i}$ for some i; (3) for each $i, p_{i} A$ is a prime ideal of $A, Q_{i} \cap A=p_{i} A$, and if J is a prime ideal of T with $J \nsubseteq Q_{i}$, then $J \cap A \neq p_{i} A$.

Key Words: Completions; Excellent rings; Formal fibers; Local rings.

2000 Mathematics Subject Classification: Primary 13J10; Secondary 13J05.

1. INTRODUCTION

In this article, we explore the relationship between a local ring A and its completion by studying how certain prime ideals of the completion of A intersect with the ring A. Let A be a local (Noetherian) ring with maximal ideal M, and let \widehat{A} denote the M-adic completion of A. We are interested in the map $\Psi: \operatorname{Spec} \widehat{A} \longrightarrow$ Spec A given by $Q \longrightarrow Q \cap A$. Since the extension $A \longrightarrow \widehat{A}$ is faithfully flat, we know that Ψ is surjective. In particular, we assume that A is an integral domain and focus on the inverse image under Ψ of (0) and a countable number of height one prime ideals of A. While the inverse image of (0) has been studied in, for example, $[1,7,9,10]$, and the inverse image of height one prime ideals has been studied separately in, for example, [2,3], the only result we know of in which the relationship between the inverse image of (0) and the inverse image of infinitely many height one prime ideals has been studied is in [8]. After some preliminary

Received September 25, 2008; Revised February 19, 2009. Communicated by I. Swanson.
Address correspondence to S. Loepp, Bronfman Science Center, Williams College, Williamstown, MA 01267, USA; Fax: (431)-597-4061; E-mail: sloepp@williams.edu
definitions and results, we describe the main theorem in [8] and explain how it relates to the main result in this article.

Let A be a local ring with maximal ideal M and P a prime ideal of A. Following Matsumura in [9], we define the formal fiber ring of A at P to be $\widehat{A} \otimes_{A}$ $k(P)$, where $k(P)$ is the field $A_{P} / P A_{P}$. The formal fiber of A at P is defined to be $\operatorname{Spec}\left(\widehat{A} \otimes_{A} k(P)\right)$. Since there is a one-to-one correspondence between elements in the formal fiber of A at P and prime ideals Q of \widehat{A} satisfying $Q \cap A=P$, we will abuse notation and say that such a prime ideal Q is in the formal fiber of A at P. If A is an integral domain with quotient field K, we define $\alpha(A)$ to be the Krull dimension of the ring $\widehat{A} \otimes_{A} K$. In other words, $\alpha(A)$ is the dimension of the formal fiber ring at (0). Heinzer, Rotthaus, and Sally have informally asked the question.

Question 1.1. If A is an excellent local integral domain with $\alpha(A)>0$, then is the set of height one prime ideals p of A satisfying $\alpha(A / p)=\alpha(A)$ a finite set?

In Example 2.26, we provide an example showing that, in fact, this set can be infinite. In other words, our result shows that we can control the relationship between the dimension of the fiber ring at (0) and the dimension of fiber rings over infinitely many height one prime ideals of an excellent local integral domain A.

The main result in [8] answers Question 1.1 when we do not require that A be excellent. In particular, let T be a complete local unique factorization domain, p a nonmaximal prime ideal of T, and F a set of nonmaximal prime ideals of T. Conditions are given in Theorem 23 of [8] to ensure that there exists a local unique factorization domain A such that $\widehat{A}=T, p \cap A=(0), Q \cap A \neq(0)$ for all prime ideals Q of T such that ht $Q>$ ht p, and $A \cap q=z_{q} A$ for all $q \in F$, where z_{q} is a nonzero prime element of T. As an example, the author lets $T=\mathbb{C}\left[\left[X_{1}, X_{2}, \ldots, X_{n}\right]\right]$, where $n>3$ and $p=\left(X_{1}, \ldots, X_{n-2}\right), F$ an infinite set of height $n-1$ prime ideals of T such that $|F|<|\mathbb{C}|$. Now, T, p, and F satisfy the conditions of Theorem 23 in [8], so there is a local unique factorization domain A with $\widehat{A}=T$ and such that $\alpha(A)=$ $n-2=\alpha(A /(q \cap A))$ for every $q \in F$. Since $A \cap q=z_{q} A$ for every $q \in F$, we have that $q \cap A$ is a prime ideal for every $q \in F$, and so this example answers Question 1.1 if we drop the condition that A need be excellent. In this article, we provide a similar example (see Example 2.26), but the A that we give is more difficult to construct because it is, in fact, excellent. Although the basic outline for the construction in our article is similar to the construction in [8], the technical details are quite different.

Theorem 2.24 is our main result and not only provides an answer for Question 1.1, but it also gives an excellent unique factorization domain whose formal fibers have other nonstandard properties. Again, let A be a local ring with completion \widehat{A}. Suppose Q is a prime ideal of \widehat{A} satisfying the property that if J is a prime ideal of \widehat{A} with $Q \cap A=J \cap A=P$, then $J \subseteq Q$. Then we say that the formal fiber of A at P is local with maximal ideal Q. For standard excellent local domains, local formal fibers seem to be very rare. For example, for the ring $R=\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]_{\left(x_{1}, x_{2}, \ldots, x_{n}\right)}$, where $n>2$, no prime ideals of height less than $n-1$ have a local formal fiber. The excellent local unique factorization domain A we construct in Theorem 2.24, however, satisfies the very unusual property that all of its prime ideals have a local formal fiber except for the zero ideal. Moreover, we are able to describe in detail all of the formal fibers of A, also extremely
unusual. Indeed, there are still many open questions about the formal fibers of even the standard excellent local ring $R=\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]_{\left(x_{1}, x_{2}, \ldots, x_{n}\right)}$. In fact, it was only recently, in [4], that Heinzer, Rotthaus, and Wiegand proved that for the ring $R=$ $\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]_{\left(x_{1}, x_{2}, \ldots, x_{n}\right)}$ every maximal element of the formal fiber of R at (0) has height $n-1$.

We now describe our main result, Theorem 2.24, in detail. Suppose that T is a complete local ring with maximal ideal M. Let P be a nonmaximal prime ideal of T and $C=\left\{Q_{1}, Q_{2}, \ldots\right\}$ a (nonempty) countable or finite set of nonmaximal prime ideals of T. Let $\left\{p_{1}, p_{2}, \ldots\right\}$ be a set of nonzero regular elements of T whose cardinality is the same as the cardinality of C. Suppose also that $p_{i} \in Q_{j}$ if and only if $i=j$. Let R_{0} be the prime subring of T and $R_{i}=R_{0}\left[p_{1}, p_{2}, \ldots, p_{i}\right]$ for $i=1,2, \ldots$. Define $S=\bigcup_{i=0}^{\infty} R_{i}$ if C is infinite and $S=\bigcup_{i=0}^{k} R_{i}$ if C contains $k<\infty$ elements. Suppose $S \cap P=(0), S \cap P^{\prime}=(0)$ whenever P^{\prime} is an associated prime ideal of T and for each $i,\left(Q_{i} \backslash p_{i} T\right) S \cap S=\{0\}$, where $\left(Q_{i} \backslash p_{i} T\right) S=\left\{q s \mid q \in Q_{i}, q \notin p_{i} T\right.$ and $\left.s \in S\right\}$. Assume that the following conditions hold:
(1) For each i if $Q \in \operatorname{Ass}\left(T / p_{i} T\right)$, we have $Q \subseteq Q_{i}$;
(2) T is a UFD;
(3) $|T|=|T / M|$;
(4) T contains the rationals;
(5) T_{P} is a regular local ring and for all $i, T_{Q_{i}}$ and $\left(T / p_{i} T\right)_{Q_{i}}$ are regular local rings.

We show that there exists an excellent local unique factorization domain $A \subseteq T$ such that:
(1) $p_{i} \in A$ for all i;
(2) $\widehat{A}=T$;
(3) $A \cap P=(0)$ and if J is a prime ideal of T with $J \cap A=(0)$, then $J \subseteq P$ or $J \subseteq Q_{i}$ for some i;
(4) For each $i, p_{i} A$ is a prime ideal in A and has a local formal fiber with maximal ideal Q_{i}.

We go on to describe the formal fibers of A in detail. We show that the formal fiber of A at $p_{i} A$ is the set $\left\{J \in \operatorname{Spec} T \mid J \subseteq Q_{i}\right.$, and $\left.p_{i} \in J\right\}$, the formal fiber of A at (0) is the set $\{P\} \cup\left\{J \in \operatorname{Spec} T \mid J \subseteq Q_{i}\right.$, for some i and $\left.p_{i} \notin J\right\}$, and the formal fiber of A at Q, where Q is a nonzero prime ideal of A and $Q \neq p_{i} A$ for all i is the set $\{Q T\}$. It follows that all formal fibers of A are local except the one at (0). We then use Theorem 2.24 to produce Example 2.26, which answers Question 1.1.

In Theorem 2.20 we prove an analogous result to Theorem 2.24, where the ring A we construct is not excellent. Also, in Theorems 2.21 and 2.25, we show that if the set C is finite, we can remove the requirement that T be a unique factorization domain.

The idea of the construction of our excellent unique factorization domain A is to first assume that a special subring of T, called a $P C$-subring (see Definition 2.1) exists. Call this subring R. In particular, we guarantee that R contains p_{i} for every i. We then adjoin elements of T to R to build a chain $\left\{R_{\alpha}\right\}$ of $P C$-subrings satisfying the following properties:
(1) $R_{\alpha} \cap P=(0)$ for every α;
(2) For all i and for all $\alpha, Q_{i} \cap R_{\alpha}=p_{i} R_{\alpha}$;
(3) For all α, we have that if I is a finitely generated ideal of R_{α}, then $I T \cap R_{\alpha}=I$;
(4) If J is a prime ideal of T such that $J \nsubseteq P$ and $J \nsubseteq Q_{i}$ for every i, then given an element, $u+J$, of T / J, there exists an R_{α} that contains a nonzero element of $u+J$.

Our excellent unique factorization domain A will be the union of the R_{α} 's. Condition (1) will guarantee that $A \cap P=(0)$, so that we have P in the formal fiber of A at (0). Condition (2) will ensure that $A \cap Q_{i}=p_{i} A$, so that we have Q_{i} in the formal fiber of A at $p_{i} A$. From conditions (3) and (4), we get that the map $A \longrightarrow T / M^{2}$ is onto and that $I T \cap A=I$ for every finitely generated ideal I of A. This is enough (see Proposition 2.8) to conclude that the completion of A is T. Condition (4) also gives us that if J is a prime ideal of T with $J \not \subset P$ and $J \nsubseteq Q$ for all $Q \in C$, then the map $A \longrightarrow T / J$ is surjective. We will use this to show that all formal fibers of A are as desired and that A is excellent. After proving Theorem 2.24, we show that there are many complete local rings T for which $P C$-subrings, in fact, do exist.

2. THE CONSTRUCTION

Before we begin constructing our ring A, we comment on the notation used in this article. When we say that a ring is local, Noetherian is implied. A quasi-local ring is one that has exactly one maximal ideal but that may not be Noetherian. To denote a local ring T with maximal ideal M, we use the notation (T, M). We will use the standard abbreviation UFD to denote a unique factorization domain. When we refer to our final ring A, we mean the ring A from Theorem 2.24.

Definition 2.1. Let (T, M) be a complete local ring, P be a nonmaximal prime ideal of T, and $C=\left\{Q_{1}, Q_{2}, \ldots\right\}$ a (nonempty) countable or finite set of nonmaximal prime ideals of T. Let $\left\{p_{1}, p_{2} \ldots\right\}$ be a set of nonzero regular elements of T whose cardinality is the same as the cardinality of C. Suppose also that $p_{i} \in Q_{j}$ if and only if $i=j$. Let $(R, R \cap M)$ be an infinite quasi-local subring of T such that $p_{i} \in R$ for every $i=1,2, \ldots$ and such that the following conditions hold:
(1) $|R|<|T|$;
(2) $R \cap P=(0)$ and if P^{\prime} is an associated prime ideal of T, then $R \cap P^{\prime}=(0)$;
(3) For each $i,\left(Q_{i} \backslash p_{i} T\right) R \cap R=\{0\}$, where $\left(Q_{i} \backslash p_{i} T\right) R=\left\{q r \mid q \in Q_{i} \backslash p_{i} T, r \in R\right\}$.

Then we call the ring R a $P C$-subring of T with respect to the set $\left\{p_{1}, p_{2}, \ldots\right\}$. If the set $\left\{p_{1}, p_{2}, \ldots\right\}$ is clear from the context, we will simply say that R is a $P C$-subring of T.

Suppose that $(T, M), C, P$, and $\left\{p_{i}\right\}$ are as in Definition 2.1. Then the Krull dimension of T is at least one and so by Lemma 2.2 in [3], we have that $|T| \geq|\mathbb{R}|$, where \mathbb{R} denotes the real numbers. We also have that by condition (2), R contains no zero-divisors of T.

The idea for property (3) of $P C$-subrings is inspired by the definition of $p T$ complement avoiding subrings of T in [2]. Indeed, to show that a certain subring of T satisfies condition (3) of $P C$-subrings, we will often use ideas from proofs in [2].

The following lemma shows that $P C$-subring properties are preserved under localization.

Lemma 2.2. Let $(T, M), C, P$, and $\left\{p_{i}\right\}$ be as in Definition 2.1. Let R be a subring of T satisfying all conditions of PC-subring except that it is not necessarily a quasi-local ring. Then $R_{(M \cap R)}$ is a PC-subring of T.

Proof. Conditions (1) and (2) of $P C$-subrings clearly hold for $R_{(M \cap R)}$. So now suppose that for some $i, s \in\left(Q_{i} \backslash p_{i} T\right) R_{(M \cap R)} \cap R_{(M \cap R)}$. We can then write $s=f / g=$ $q f^{\prime} / g^{\prime}$ with $f, g, f^{\prime}, g^{\prime} \in R, g, g^{\prime} \notin M$, and $q \in Q_{i} \backslash p_{i} T$. Since R satisfies condition (2) of $P C$-subrings, it contains no zero-divisors of T. It follows that $g^{\prime} f=q g f^{\prime} \in$ $\left(Q_{i} \backslash p_{i} T\right) R \cap R=\{0\}$. Since $g^{\prime} \neq 0$, we have $f=0$, and so $s=0$, as desired.

In the next lemma we show that taking certain unions of $P C$-subrings will preserve the $P C$-subring properties.

Lemma 2.3. Let $(T, M), C, P$, and $\left\{p_{i}\right\}$ be as in Definition 2.1. Let Ω be a wellordered set, and let $\left\{R_{\alpha} \mid \alpha \in \Omega\right\}$ be a set of PC-subrings indexed by Ω with the property that $R_{\alpha} \subseteq R_{\beta}$ for all α, β satisfying $\alpha<\beta$. Let $S=\bigcup_{\alpha \in \Omega} R_{\alpha}$. Then S satisfies all properties of PC-subrings except for possibly condition (1). Moreover, if $\left|R_{\alpha}\right| \leq \lambda$ for all $\alpha \in \Omega$, then $|S| \leq \lambda \cdot \sup \left\{|\Omega|, \aleph_{0}\right\}$. In particular, if $|\Omega| \leq \lambda,\left|R_{\alpha}\right| \leq \lambda$ for all α and $\left|R_{\alpha}\right|=\lambda$ for some α we have $|S|=\lambda$.

Proof. The cardinality conditions are clear. Condition (2) of $P C$-subrings holds for S since it holds for every R_{α}. We now show that property (3) in the definition of $P C$-subring is satisfied. Suppose that for some i, we have $f \in\left(Q_{i} \backslash p_{i} T\right) S \cap S$. Then $f=q g$ with $q \in\left(Q \backslash p_{i} T\right)$ and $g \in S$. So $g, f \in R_{\alpha}$ for some α, and hence $f=q g \in$ $\left(Q \backslash p_{i} T\right) R_{\alpha} \cap R_{\alpha}=(0)$, which shows $f=0$ as required.

Recall that we want our final ring A to satisfy the property that $A \cap Q_{i}=p_{i} A$ for all i. While we cannot maintain this property at every step, we can show that when the property is not satisfied for a $P C$-subring R, we can build a larger $P C$ subring S that does satisfy $S \cap Q_{i}=p_{i} S$ for all i. The next three lemmas show how to do this. This idea was inspired by Lemmas 3.2, 3.4 and 3.5 from [3].

Lemma 2.4. Let $(T, M), C, P$, and $\left\{p_{i}\right\}$ be as in Definition 2.1. Suppose ($R, R \cap M$) is a PC-subring of T and let $\left\{c_{1}, c_{2}, \ldots\right\}$ be a set of elements of T whose cardinality is the same as that of C. Suppose also that $c_{i} \in p_{i} T \cap R$ for every i. Then there exists a $P C$-subring S of T such that $R \subseteq S \subseteq T, c_{i} \in p_{i} S$ for each i and $|R|=|S|$.

Proof. Since $c_{1} \in p_{1} T \cap R$, we have that $c_{1}=p_{1} u$ for some $u \in T$. We claim that $S_{1}=R[u]_{(R[u] \cap M)}$ is a $P C$-subring. Note that we have $c_{1} \in p_{1} S_{1}$, and $\left|S_{1}\right|=|R|$.

Condition (1) for $P C$-subrings is clearly satisfied by $R[u]$. Now suppose Q is a prime ideal of T satisfying $Q \cap R=(0)$. We claim that $Q \cap R[u]=(0)$. Suppose $f \in Q \cap R[u]$. Then $f=r_{n} u^{n}+\cdots+r_{1} u+r_{0}$ where $r_{i} \in R$. Now, $p_{1}^{n} f=r_{n} c_{1}^{n}+\cdots+$ $r_{1} c_{1} p_{1}^{n-1}+r_{0} p_{1}^{n} \in Q \cap R=(0)$. Since p_{1} is a regular element of T, we have that $f=0$.

Now suppose that for some i, we have $f \in\left(Q_{i} \backslash p_{i} T\right) R[u] \cap R[u]$. Then $f=q s=z$, where $q \in Q_{i} \backslash p_{i} T$ and $s, z \in R[u]$. As in the above paragraph, we can show that $p_{1}^{n} s$ and $p_{1}^{m} z$ are elements of R for appropriate integers n and m. Now let $N=m+n$, and note that $p_{1}^{N} f=p_{1}^{N} q s=p_{1}^{N} z \in\left(Q_{i} \backslash p_{i} T\right) R \cap R=\{0\}$. As p_{1} is a regular element of T, we have that $f=0$. Now using Lemma 2.2, we have that S_{1} is a $P C$-subring of T.

Note that $c_{i} \in p_{i} T \cap R \subseteq p_{i} T \cap S_{1}$ for every i and $c_{1} \in p_{1} S_{1}$. Now construct a $P C$-subring S_{2} of T using the above argument replacing R by S_{1}, p_{1} by p_{2}, and c_{1} by c_{2} so that $S_{1} \subseteq S_{2},\left|S_{2}\right|=|R|, c_{i} \in p_{i} T \cap S_{2}$ for every i and $c_{2} \in p_{2} S_{2}$. Continue to construct S_{j} for $j=1,2 \ldots$ so that $c_{j} \in p_{j} S_{j}$. Define $S=\bigcup_{i=1}^{\infty} S_{i}$ if C is infinite, and define $S=S_{k}$ if C contains $k<\infty$ elements. Then using Lemma 2.3 in the infinite case, we have that S satisfies $|S|=|R|$ and is a $P C$-subring. It is clear that $R \subseteq S \subseteq T$. To see that $c_{i} \in p_{i} S$, just note that $c_{i} \in p_{i} S_{i} \subseteq p_{i} S$.

Definition 2.5. Let Ω be a well-ordered set and $\alpha \in \Omega$. We define $\gamma(\alpha)=\sup \{\beta \in$ $\Omega \mid \beta<\alpha\}$.

Lemma 2.6. Let (T, M), C, P, and $\left\{p_{i}\right\}$ be as in Definition 2.1. Suppose ($R, R \cap M$) is a PC-subring of T. Then there exists a $P C$-subring S of T with $|S|=|R|$ such that $R \subseteq S \subseteq T$ and $p_{i} T \cap R \subseteq p_{i} S$ for each i.

Proof. Let $\Omega=p_{1} T \cap R$ and note that $|\Omega| \leq|R|$. Well order Ω letting 0 denote the first element and define $R_{0}=R$. Note that as $p_{1} R \subseteq p_{1} T \cap R$ and R is infinite, we have that Ω has no maximal element. We will inductively define R_{α} for every $\alpha \in \Omega$. Let $\alpha \in \Omega$, and assume that for all $\beta<\alpha, R_{\beta}$ has been defined and satisfies $\left|R_{\beta}\right|=|R|$ and $\delta \in p_{1} R_{\beta}$ for all $\delta<\beta$. We now work to define R_{α}.

If $\gamma(\alpha)<\alpha$, then obtain R_{α} from $R_{\gamma(\alpha)}$ using Lemma 2.4 with $c_{1}=\gamma(\alpha)$. Then R_{α} is a $P C$-subring of T and $\left|R_{\alpha}\right|=\left|R_{\gamma(\alpha)}\right|=|R|$. Since $\gamma(\alpha) \in p_{1} R_{\alpha}$ and $R_{\gamma(\alpha)} \subseteq R_{\alpha}$, using the induction hypothesis, we see that $\delta \in p_{1} R_{\alpha}$ for all $\delta<\alpha$.

On the other hand, if $\gamma(\alpha)=\alpha$ define $R_{\alpha}=\bigcup_{\beta<\alpha} R_{\beta}$. Then by Lemma 2.3, R_{α} is a $P C$-subring and $\left|R_{\alpha}\right|=|R|$. We also have, by induction, that $\delta \in p_{1} R_{\alpha}$ for all $\delta<\alpha$.

Now, let $S_{1}=\bigcup_{\alpha \in \Omega} R_{\alpha}$. Then by Lemma 2.3, S_{1} is a $P C$-subring with $\left|S_{1}\right|=$ $|R|$. If $r \in p_{1} T \cap R$, then $r=\gamma(\alpha)$ for some α in Ω with $\gamma(\alpha)<\alpha$. By construction $r \in p_{1} R_{\alpha} \subseteq p_{1} S_{1}$, and so $p_{1} T \cap R \subseteq p_{1} S_{1}$.

Now, repeat the above construction replacing R by S_{1} and p_{1} by p_{2} to construct a $P C$-subring S_{2} so that $S_{1} \subseteq S_{2},\left|S_{2}\right|=|R|$, and $p_{2} T \cap S_{1} \subseteq p_{2} S_{2}$. In this manner, define S_{k} for $k=2,3 \ldots$ so that $S_{k-1} \subseteq S_{k},\left|S_{k}\right|=|R|$, and $p_{k} T \cap S_{k-1} \subseteq$ $p_{k} S_{k}$. Now let $S=\bigcup_{k=1}^{\infty} S_{k}$ if C is infinite, and let $S=S_{n}$ if C contains $n<\infty$ elements. By Lemma 2.3,S is a $P C$-subring and $|S|=|R|$. Note that if $f \in p_{i} T \cap R$, then $f \in p_{i} T \cap S_{i-1} \subset p_{i} S$.

Lemma 2.7. Let $(T, M), C, P$, and $\left\{p_{i}\right\}$ be as in Definition 2.1. Suppose ($R, R \cap M$) is a PC-subring of T. Then there exists a $P C$-subring S of T with $|S|=|R|$ such that $R \subseteq S \subseteq T$ and $p_{i} T \cap S=p_{i} S$ for all i.

Proof. Let $R_{0}=R$. We define R_{i} for $i=1,2, \ldots$ by induction. Assume R_{i-1} has been defined so that it is a $P C$-subring and $\left|R_{i-1}\right|=|R|$. Now use Lemma 2.6
to find a $P C$-subring R_{i} with $p_{j} T \cap R_{i-1} \subseteq p_{j} R_{i}$ for all $j=1,2 \ldots$ and so that $\left|R_{i}\right|=\left|R_{i-1}\right|=|R|$. Let $S=\bigcup_{i=1}^{\infty} R_{i}$. By Lemma 2.3 we know that S is a $P C$ subring with $|S|=|R|$. Further, if $c \in p_{i} T \cap S$ for some i, there is an $n \in \mathbb{N}$ such that $c \in p_{i} T \cap R_{n} \subseteq p_{i} R_{n+1} \subseteq p_{i} S$. Therefore, $p_{i} T \cap S \subseteq p_{i} S$, and it follows that $p_{i} T \cap S=p_{i} S$ for all $i=1,2, \ldots$.

If R is a $P C$-subring of T, then $Q_{i} \cap R \subseteq p_{i} T$ for all i. If we have the additional property given in Lemma 2.7 that $p_{i} T \cap R=p_{i} R$, then $Q_{i} \cap R=p_{i} R$. We also have in this case that, since Q_{i} is a prime ideal of $T, p_{i} R$ is a prime ideal of R.

Eventually, we show that the completion of our final ring A is T. To do this, we use the following very useful proposition.

Proposition 2.8 ([6], Proposition 1). If $(A, M \cap A)$ is a quasi-local subring of a complete local ring (T, M), the map $A \longrightarrow T / M^{2}$ is onto and $I T \cap A=I$ for every finitely generated ideal I of A, then A is Noetherian, and the natural homomorphism $\widehat{A} \longrightarrow T$ is an isomorphism.

To control the formal fiber of A at (0) and the formal fibers at the ideals $p_{i} A$, as well as to ensure that the completion of A is T, we adjoin elements of T to a $P C$ subring of T so that they satisfy very specific transcendental properties. Lemma 2.9 allows us to do this. In many of the following results, to satisfy the cardinality condition of this lemma, we use condition (1) of $P C$-subrings.

Lemma 2.9 ([5], Lemma 3). Let (T,M) be a local ring. Let $C \subset \operatorname{Spec} T$, let I be an ideal such that $I \not \subset P$ for every $P \in C$, and let D be a subset of T. Suppose $|C \times D|<$ $|T / M|$. Then $I \not \subset \bigcup\{(P+r) \mid P \in C, r \in D\}$.

Since our goal is for any prime ideal of T not contained in P or a Q_{i} to not be in the formal fiber of $p_{i} A$ or (0), if J is a prime ideal of T such that $J \nsubseteq P$ and $J \nsubseteq Q$ for all $Q \in C$, then we want $A \cap J \neq(0)$ and $A \cap J \neq p_{i} A$ for every i. We also want the map $A \longrightarrow T / J$ to be onto. In the proof of Lemma 2.10, we show that, given a $P C$-subring R, we can construct a larger $P C$-subring S that contains an element from a specific coset of T / J and so that the property that $p_{i} T \cap S=p_{i} S$ for all i is satisfied.

Lemma 2.10. Let $(T, M), C, P$, and $\left\{p_{i}\right\}$ be as in Definition 2.1 with the extra condition that for each i if $Q \in \operatorname{Ass}\left(T / p_{i} T\right)$, then $Q \subseteq Q_{i}$. Suppose further that $|T|=$ $|T / M|$. Let $(R, R \cap M)$ be a $P C$-subring of T such that $p_{i} T \cap R=p_{i} R$ for each i, and let $u+J \in T / J$ where J is an ideal of T with $J \nsubseteq P$ and $J \nsubseteq Q$ for all $Q \in C$. Then there exists a PC-subring S of T meeting the following conditions:
(1) $R \subseteq S \subseteq T$;
(2) $|S|=|R|$;
(3) $u+J$ is in the image of the map $S \rightarrow T / J$;
(4) If $u \in J$, then $S \cap J \nsubseteq Q$, for all $Q \in C$;
(5) $p_{i} T \cap S=p_{i} S$ for all i.

Proof. For each $P^{\prime} \in$ Ass $T \cup\{P\}$, let $D_{\left(P^{\prime}\right)}$ be a full set of coset representatives of the cosets $t+P^{\prime}$ that make $(u+t)+P^{\prime}$ algebraic over R. For each $Q_{i} \in C$ let $D_{\left(Q_{i}\right)}$
be a full set of coset representatives of the cosets $t+Q_{i} \in T / Q_{i}$ with $t \in T$ that make $(u+t)+Q_{i}$ algebraic over $R /\left(R \cap Q_{i}\right)$. Let G be the set $C \cup\{P\} \cup$ Ass T, and note that if $Q \in G$, then $t+Q \neq t^{\prime}+Q$ implies that $(u+t)+Q \neq\left(u+t^{\prime}\right)+Q$. Also, the algebraic closure of $R /(R \cap Q)$ in T / Q has cardinality at most $|R|$ and so $\left|D_{(Q)}\right| \leq|R|$. Let

$$
D:=\bigcup_{Q \in G} D_{(Q)} .
$$

Then we have $|D| \leq|R|<|T|=|T / M|$.
We now claim that if P^{\prime} is an associated prime ideal of T, then $J \nsubseteq P^{\prime}$. Suppose that $b \in P^{\prime}$. Then b is a zero-divisor, so $b c=0$ for some $c \in T$ with $c \neq 0$. If $c \in p_{1} T$, then we can write $c=p_{1}^{n} c^{\prime}$ for some positive integer n and $c^{\prime} \in T$ with $c^{\prime} \notin p_{1} T$. Now, $0=b c=b p_{1}^{n} c^{\prime}$, and as p_{1} is not a zero-divisor, we have $b c^{\prime}=0$. Thus we may assume that $b c=0$ for some $c \notin p_{1} T$. Now, $b\left(c+p_{1} T\right)=0+p_{1} T$ in $T / p_{1} T$ with $c+$ $p_{1} T \neq 0+p_{1} T$. It follows that $b \in Q$ for some $Q \in \operatorname{Ass}\left(T / p_{1} T\right)$. By our hypothesis, we have that $b \in Q \subseteq Q_{1}$. Hence, $P^{\prime} \subseteq Q_{1}$. Since $J \nsubseteq Q_{1}$, we have that $J \nsubseteq P^{\prime}$ as desired.

Since $|G \times D| \leq|R|<|T|=|T / M|$, we can now employ Lemma 2.9 with $I=J$ to find an $x \in J$ such that $x \notin \bigcup\{r+Q \mid r \in D, Q \in G\}$. We claim that $S^{\prime}=R[u+$ $x]_{(R[u+x] \cap M)}$ is a $P C$-subring. It is clear that $\left|S^{\prime}\right|=|R|$. Further, note that since $(u+x)+P^{\prime}$ is transcendental over R for all $P^{\prime} \in$ Ass $T \cup\{P\}$, we know if $f=r_{n}(u+$ $x)^{n}+\cdots+r_{0} \in R[u+x] \cap P^{\prime}$ for some $P^{\prime} \in \operatorname{Ass} T \cup\{P\}$, then $r_{i} \in R \cap P^{\prime}=(0)$ for all i and so $f=0$. We thus have $R[u+x] \cap P^{\prime}=(0)$ for every $P^{\prime} \in$ Ass $T \cup\{P\}$.

We now claim that $\left(Q_{i} \backslash p_{i} T\right) R[u+x] \cap R[u+x]=\{0\}$ for each i. First, suppose we have $f \in\left(Q_{i} \backslash p_{i} T\right) R[u+x] \cap R[u+x]$ for some i with $f \neq 0$. Then we have $f=r_{n}(u+x)^{n}+\cdots+r_{0}=q\left(s_{n^{\prime}}(u+x)^{n^{\prime}}+\cdots+s_{1}(u+x)+s_{0}\right)$ for some $q \in Q_{i} \backslash p_{i} T$ and some $r_{0}, \ldots, r_{n}, s_{0}, \ldots, s_{n^{\prime}} \in R$ with $r_{k} \neq 0$ for some $1 \leq k \leq n$. Let m be the largest integer such that $r_{j} \in\left(p_{i} T\right)^{m}$ for all $1 \leq j \leq n$ (this exists by the Krull Intersection theorem), and let m^{\prime} be the largest integer such that $s_{j^{\prime}} \in\left(p_{i} T\right)^{m^{\prime}}$ for all $1 \leq j^{\prime} \leq n^{\prime}$. Then since $p_{i} T \cap R=p_{i} R$, we have $\left(p_{i} T\right)^{m} \cap R=p_{i}^{m} R$ (and similarly for m^{\prime}), and we can write

$$
f=p_{i}^{m}\left(r_{n}^{\prime}(u+x)^{n}+\cdots+r_{0}^{\prime}\right)=q p_{i}^{m^{\prime}}\left(s_{n}^{\prime}(u+x)^{n^{\prime}}+\cdots+s_{0}^{\prime}\right)
$$

for some $r_{0}^{\prime}, \ldots, r_{n}^{\prime}, s_{0}^{\prime}, \ldots, s_{n}^{\prime} \in R$.
By the maximality of m and m^{\prime}, we know there is an l such that $r_{l}^{\prime} \notin p_{i} T$ and a j such that $s_{j}^{\prime} \notin p_{i} T$. Since $\left(Q_{i} \backslash p_{i} T\right) R \cap R=\{0\}$, we have that $Q_{i} \cap R \subseteq p_{i} T$, and thus $r_{l}^{\prime}, s_{j}^{\prime} \notin Q_{i} \cap R$. Since $(u+x)+Q_{i}$ is transcendental over $R /\left(R \cap Q_{i}\right)$ for all $i=1,2 \ldots$ we, therefore, know that

$$
\begin{aligned}
& r_{n}^{\prime}(u+x)^{n}+\cdots+r_{1}^{\prime}(u+x)+r_{0}^{\prime} \notin Q_{i} \\
& s_{n^{\prime}}^{\prime}(u+x)^{n^{\prime}}+\cdots+s_{1}^{\prime}(u+x)+s_{0}^{\prime} \notin Q_{i} .
\end{aligned}
$$

Now suppose that $m \leq m^{\prime}$. Since p_{i} is not a zero-divisor, we may cancel it on both sides of our equation to get

$$
r_{n}^{\prime}(u+x)^{n}+\cdots+r_{1}^{\prime}(u+x)+r_{0}^{\prime}=q p_{i}^{m^{\prime}-m}\left(s_{n^{\prime}}^{\prime}(u+x)^{n^{\prime}}+\cdots+s_{1}^{\prime}(u+x)+s_{0}^{\prime}\right)
$$

But the left-hand side is not in Q_{i}, while the right-hand side is clearly in Q_{i}, which is a contradiction.

On the other hand, suppose $m>m^{\prime}$. Then canceling, we have

$$
p_{i}^{m-m^{\prime}}\left(r_{n}^{\prime}(u+x)^{n}+\cdots+r_{1}^{\prime}(u+x)+r_{0}^{\prime}\right)=q\left(s_{n^{\prime}}^{\prime}(u+x)^{n^{\prime}}+\cdots+s_{1}^{\prime}(u+x)+s_{0}^{\prime}\right) .
$$

The left-hand side is clearly in $p_{i} T$, but since $s_{n^{\prime}}^{\prime}(u+x)^{n^{\prime}}+\cdots+s_{1}^{\prime}(u+x)+s_{0}^{\prime}$ is not in Q_{i}, it is not in any associated prime of $p_{i} T$, and so is not a zero-divisor of $T / p_{i} T$. Since $q \notin p_{i} T$, we have that the right-hand side is not in $p_{i} T$, which is a contradiction. Thus we have $\left(\left(Q_{i} \backslash p_{i} T\right) R[u+x]\right) \cap R[u+x]=\{0\}$. We now use Lemma 2.2 to conclude that S^{\prime} is a $P C$-subring of T.

We now employ Lemma 2.7 to find a $P C$-subring S with $S^{\prime} \subseteq S \subseteq T$ and $|S|=\left|S^{\prime}\right|=|R|$ such that $p_{i} T \cap S=p_{i} S$ for each i. Since $S^{\prime} \subseteq S$, the image of S in T / J contains $u+x+J=u+J$. Furthermore, if $u \in J$, then $u+x \in J \cap S$, but since $(u+x)+Q_{i}$ is transcendental over $R /\left(R \cap Q_{i}\right)$ for each $i \in\{1,2, \ldots\}$, we have $u+$ $x \notin Q_{i}$ so $J \cap S \nsubseteq Q_{i}$ for all i.

Remark 2.11. Note that from the proof of Lemma 2.10 we have that if R is a $P C$ subring of T and $x+Q_{i} \in T / Q_{i}$ is transcendental over $R /\left(Q_{i} \cap R\right)$ for every i, then $\left(Q_{i} \backslash p_{i} T\right) R[x] \cap R[x]=\{0\}$ for every i. We also have that if P^{\prime} is a prime ideal of T with $R \cap P^{\prime}=(0)$ and $x+P^{\prime} \in T / P^{\prime}$ is transcendental over R, then $R[x] \cap P^{\prime}=(0)$.

Remark 2.12. By the proof of Lemma 2.10 if the condition $Q \in \operatorname{Ass}\left(T / p_{i} T\right)$ implies $Q \subseteq Q_{i}$ is satisfied, then Q_{i} contains all associated prime ideals of T.

Recall that to show that the completion of A is T, we use Proposition 2.8. In particular, we need $I T \cap A=I$ for all finitely generated ideals I of A. This is perhaps the most challenging part of the proof. Certainly, $I \subseteq I T \cap A$ trivially holds. Given a $P C$-subring R, we show that there is a larger $P C$-subring S satisfying $I T \cap S=I$ for all finitely generated ideals I of S. Theorem 2.13 is the first step in doing this. The next series of results is devoted to constructing this $P C$-subring S, and the result is finally given in Lemma 2.19.

Theorem 2.13. Let $(T, M), C, P$, and $\left\{p_{i}\right\}$ be as in Definition 2.1 with the extra conditions that T is a UFD and $|T / M|=|T|$. Let $(R, R \cap M)$ be a $P C$-subring of T such that $p_{i} T \cap R=p_{i} R$, for each i. Suppose I is a finitely generated ideal of R, and let $c \in I T \cap R$. Then there exists a PC-subring S of T meeting the following conditions:
(1) $R \subseteq S \subseteq T$;
(2) $|S|=|R|$;
(3) $c \in I S$;
(4) $p_{i} T \cap S=p_{i} S$ for each i.

The proof of Theorem 2.13 involves many steps. To make reading the proof easier, we break it up into several lemmas.

Lemma 2.14. Theorem 2.13 holds if I is generated by one element.

Proof. Suppose $I=a R$. If $a=0$, then $c=0$ so $S=R$ is the desired $P C$-subring. If $a \neq 0$, then $c=a u$ for some $u \in T$. We claim that $S^{\prime}=R[u]_{(R[u] \cap M)}$ is a $P C$-subring of T. First note that clearly $\left|S^{\prime}\right|=|R|<|T|$. Suppose $f \in P \cap R[u]$. Then $f=r_{n} u^{n}+$ $\cdots+r_{1} u+r_{0} \in P$, and $a^{n} f=r_{n} c^{n}+\cdots+r_{1} c a^{n-1}+r_{0} a^{n} \in P \cap R=(0)$. Since $a \in R$ and R contains no zero-divisors of T, we have $f=0$. It follows that $R[u] \cap P=(0)$. A similar proof shows that $R[u]$ satisfies the second part of condition (2) of PCsubrings. Now suppose $f \in\left(\left(Q_{i} \backslash p_{i} T\right) R[u]\right) \cap R[u]$ for some i. Then $f=q g$, where $q \in Q_{i} \backslash p_{i} T$ and $g \in R[u]$. Since $c=a u \in R$, from the argument above, we know there exists an m such that $a^{m} f \in R$ and $a^{m} g \in R$. Thus we have $a^{m} f \in\left(Q_{i} \backslash p_{i} T\right) R \cap$ $R=\{0\}$, and since R contains no zero-divisors of T, we know $f=0$. Therefore, $\left(Q_{i} \backslash p_{i} T\right) R[u] \cap R[u]=\{0\}$ for all i. By Lemma 2.2, we have that S^{\prime} is a $P C$-subring. Now use Lemma 2.7, with $R=S^{\prime}$ to construct the desired S.

To prove Theorem 2.13 when I is generated by two elements, we first show that it suffices to prove Theorem 2.13 if the generators of I share no associated prime ideals. To do this, we use the following lemma.

Lemma 2.15 ([7], Lemma 4). Suppose (T, M) is a local ring with $|T / M|$ infinite. Let $C_{1}, C_{2} \subset \operatorname{Spec} T, u, w \in T$ such that $u \notin P$ for every $P \in C_{1}$ and $w \notin Q$ for every $Q \in C_{2}$. Also, suppose D_{1} and D_{2} are subsets of T. If $\left|C_{1} \times D_{1}\right|<|T / M|$ and $\mid C_{2} \times$ $D_{2}\left|<|T / M|\right.$, then we can find a unit $x \in T$ such that $u x \notin \bigcup\left\{P+r \mid P \in C_{1}, r \in D_{1}\right\}$ and $w x^{-1} \notin \bigcup\left\{Q+a \mid Q \in C_{2}, a \in D_{2}\right\}$.

Lemma 2.16. To prove Theorem 2.13, it suffices to prove it for the case $I=$ $\left(y_{1}, y_{2}, \ldots, y_{m}\right)$ where $m \geq 2$ and $\operatorname{Ass}\left(T / y_{1} T\right) \cap \cdots \cap \operatorname{Ass}\left(T / y_{m} T\right)=\emptyset$.

Proof. Note that by Lemma 2.14, Theorem 2.13 holds for $m=1$. Now suppose $I=\left(y_{1}, \ldots, y_{m}\right)$ with $m \geq 2$ and $\operatorname{Ass}\left(T / y_{1} T\right) \cap \cdots \cap \operatorname{Ass}\left(T / y_{m} T\right) \neq \emptyset$. Since T is a UFD, we know there is a greatest common divisor of $y_{1}, y_{2}, \ldots y_{m}$, call it x. By our assumption, x is not a unit. Write $x=\left(r_{1}^{e_{1}} \cdots r_{s}^{e_{s}}\right) w$ where each $r_{j}=p_{i}$ for some i, the e_{i} 's are positive integers, and so that $w \notin p_{i} T$ for every i. If no p_{i} divides x, then set $s=1$ and $r_{1}=1$. We claim that $w \notin P$ and that for every i, we have $w \notin Q_{i}$. Note that $y_{1}=x z_{1}=\left(r_{1}^{e_{1}} \cdots r_{s}^{e_{s}}\right) w z_{1}$ for some $z_{1} \in T$, so if $w \in P$, then $y_{1} \in P \cap R=(0)$, a contradiction. Now suppose that for some i, we have $w \in Q_{i}$. Note that

$$
\begin{aligned}
y_{1} & =\left(r_{1}^{e_{1}} \cdots r_{s}^{e_{s}}\right) w z_{1} \\
y_{2} & =\left(r_{1}^{e_{1}} \cdots r_{s}^{e_{s}}\right) w z_{2} \\
& \vdots \\
y_{m} & =\left(r_{1}^{e_{1}} \cdots r_{s}^{e_{s}}\right) w z_{m}
\end{aligned}
$$

for $z_{1}, z_{2}, \ldots, z_{m} \in T$. If p_{i} divides $w z_{k}$ for all $k=1,2, \ldots, m$, then $p_{i}\left(r_{1}^{e_{1}} \cdots r_{s}^{e_{s}}\right)$ divides y_{j} for all $j=1,2 \ldots, m$. Since x is a greatest common divisor for the y_{j} 's, we have that $p_{i}\left(r_{1}^{e_{1}} \cdots r_{s}^{e_{s}}\right)$ divides $x=\left(r_{1}^{e_{1}} \cdots r_{s}^{e_{s}}\right) w$. Hence $p_{i} u=w$ for some $u \in T$. But this contradicts that $w \notin p_{i} T$. So we have that there is a j such that p_{i} does not divide $w z_{j}$. It follows that $y_{j}=\left(w z_{j}\right)\left(r_{1}^{e_{1}} \cdots r_{s}^{e_{s}}\right) \in\left(Q_{i} \backslash p_{i} T\right) R \cap R=\{0\}$, a contradiction. So we have shown that $w \notin P$ and that for every i, we have $w \notin Q_{i}$.

Now if P^{\prime} is a prime ideal of T, let $D_{\left(P^{\prime}\right)}$ be a full set of coset representatives for those cosets $u+P^{\prime} \in T / P^{\prime}$ such that $u+P^{\prime}$ is algebraic over $R /\left(R \cap P^{\prime}\right)$. Let $G=$ $C \cup\{P\}$ and $D=\bigcup_{P^{\prime} \in G} D_{\left(P^{\prime}\right)}$. Now use Lemma 2.15 to find a unit $t \in T$ satisfying

$$
w t \notin \bigcup\left\{P^{\prime}+r \mid P^{\prime} \in G, r \in D\right\} .
$$

Then we have that $w t+P^{\prime}$ is transcendental over $R /\left(R \cap P^{\prime}\right)$ for all $P^{\prime} \in G$. Now let $R^{\prime}=R[w t]$. By Remark 2.11 and Lemma 2.2, we have that $S_{0}=R_{\left(R^{\prime} \cap M\right)}^{\prime}$ is a $P C$ subring. Note that since T is an integral domain, the second part of condition (2) of $P C$-subrings is satisfied automatically. We also have that $x t=\left(r_{1}^{e_{1}} \cdots r_{s}^{e_{s}}\right)(w t) \in S_{0}$.

Now, $y_{1} \in(x t) T \cap S_{0}$, so use the proof of Lemma 2.14 to construct a $P C$ subring S_{1} so that $S_{0} \subseteq S_{1} \subseteq T,\left|S_{1}\right|=\left|S_{0}\right|=|R|$, and $y_{1} \in(x t) S_{1}$. Now, $y_{2} \in(x t) T \cap$ S_{1} so repeat this construction to find a $P C$-subring S_{2} so that $S_{1} \subseteq S_{2} \subseteq T,\left|S_{2}\right|=|R|$, and $y_{2} \in(x t) S_{2}$. Keep going, so that for every j with $1 \leq j \leq m$, we have $S_{j-1} \subseteq$ $S_{j} \subseteq T,\left|S_{j}\right|=|R|$, and $y_{j} \in(x t) S_{j}$. Note that $c \in(x t) T \cap S_{m}$, so we can do the construction one more time to construct a $P C$-subring $S^{\prime \prime}$ satisfying $R \subseteq S^{\prime \prime} \subseteq T$, $\left|S^{\prime \prime}\right|=|R|, c \in(x t) S^{\prime \prime}$, and $y_{j} \in(x t) S^{\prime \prime}$ for all j satisfying $1 \leq j \leq m$. Use Lemma 2.7 to construct a $P C$-subring S^{*} satisfying the above properties and that $p_{i} T \cap S^{*}=p_{i} S^{*}$ for each i. Let $c^{\prime}=c /(x t)$ and $y_{j}^{\prime}=y_{j} /(x t)$ for $j=1,2 \ldots, m$. Then $c^{\prime} \in\left(y_{1}^{\prime}, \ldots, y_{m}^{\prime}\right) T \cap$ S^{*} and $\operatorname{Ass}\left(T / y_{1}^{\prime} T\right) \cap \cdots \cap \operatorname{Ass}\left(T / y_{m}^{\prime} T\right)=\emptyset$. So we can use our assumption that Theorem 2.13 holds in this case to find a $P C$-subring S such that $S^{*} \subseteq S \subseteq T,|S|=\left|S^{*}\right|$, $c^{\prime} \in\left(y_{1}^{\prime}, \ldots, y_{m}^{\prime}\right) S$, and $p_{i} T \cap S=p_{i} S$ for every i. It follows that $R \subseteq S \subseteq T,|S|=|R|$, and $c=(x t) c^{\prime} \in\left((x t) y_{1}^{\prime}, \ldots,(x t) y_{m}^{\prime}\right) S=\left(y_{1}, \ldots, y_{m}\right) S$.

Lemma 2.17. Theorem 2.13 holds if I is generated by two elements.
Proof. We now assume $I=\left(y_{1}, y_{2}\right)$. By Lemma 2.16, we may reduce to the case $\operatorname{Ass}\left(T / y_{1} T\right) \cap \operatorname{Ass}\left(T / y_{2} T\right)=\emptyset$. Our proof follows closely the proof of Lemma 4 in [5]. Now $c=y_{1} t_{1}+y_{2} t_{2}$ for some $t_{1}, t_{2} \in T$. We write $c=\left(t_{1}+t y_{2}\right) y_{1}+\left(t_{2}-\right.$ $\left.t y_{1}\right) y_{2}$, where we will choose $t \in T$ in a strategic way later. Let $x_{1}=t_{1}+t y_{2}$ and $x_{2}=$ $t_{2}-t y_{1}$. Then we have $c=x_{1} y_{1}+x_{2} y_{2}$. Let $R^{\prime}=R\left[x_{1}, y_{2}^{-1}\right] \cap R\left[x_{2}, y_{1}^{-1}\right]$ and note that since $x_{1}=\left(c-x_{2} y_{2}\right) / y_{1}$ and $x_{2}=\left(c-x_{1} y_{1}\right) / y_{2}$, we have $x_{1}, x_{2} \in R^{\prime}$ and so $c \in$ $\left(y_{1}, y_{2}\right) R^{\prime}$.

We now show that $R^{\prime} \subseteq T$. Note that $R^{\prime} \subseteq T\left[y_{1}^{-1}\right] \cap T\left[y_{2}^{-1}\right]$. Let $f \in T\left[y_{1}^{-1}\right] \cap$ $T\left[y_{2}^{-1}\right]$. Then $f=t / y_{2}^{n}$ for some $t \in T$ and some nonnegative integer n. We also have that $f=s / y_{1}^{m}$ for some $s \in T$ and some nonnegative integer m. It follows that $s y_{2}^{n}=$ $t y_{1}^{m} \in T$, and since y_{1} and y_{2} are relatively prime in T, we have that y_{1}^{m} must divide s in T. Hence, $f \in T$, and so $R^{\prime} \subseteq T\left[y_{1}^{-1}\right] \cap T\left[y_{2}^{-1}\right]=T$.

We will now work to define t. Let $G=C \cup\{P\}$. If $y_{1}, y_{2} \in Q_{i}$ for some i, then $y_{1}, y_{2} \in Q_{i} \cap R \subseteq p_{i} T$. This contradicts that $\operatorname{Ass}\left(T / y_{1} T\right) \cap \operatorname{Ass}\left(T / y_{2} T\right)=\emptyset$. So for every $Q \in G$, we have y_{1} or y_{2} is not in Q. Now, let $Q \in G$, and suppose $y_{1} \notin Q$. Define $D_{(Q)}$ to be a full set of coset representatives of the cosets $t+Q \in$ T / Q that make $x_{2}+Q=\left(t_{2}-t y_{1}\right)+Q$ algebraic over $R /(Q \cap R)$. Suppose $t+Q \neq$ $t^{\prime}+Q$. Then if $\left(t_{2}-t y_{1}\right)+Q=\left(t_{2}-t^{\prime} y_{1}\right)+Q$, we have $y_{1}\left(t-t^{\prime}\right) \in Q$. As $y_{1} \notin Q$, we have $t+Q=t^{\prime}+Q$, a contradiction. It follows that different choices of the coset $t+Q$ will give us different cosets $x_{2}+Q$. If $y_{1} \in Q$, then $y_{2} \notin Q$. In this case, let $D_{(Q)}$ be a full set of coset representatives of the cosets $t+Q \in T / Q$ that
make $x_{1}+Q=\left(t_{1}+t y_{2}\right)+Q$ algebraic over $R /(Q \cap R)$. Using the same argument as above, we have that different choices of the coset $t+Q$ will give different cosets $x_{1}+Q$. Let $D=\bigcup_{Q \in G} D_{(Q)}$. Then we have $|D \times G|<|T|=|T / M|$. Now use Lemma 2.9 with $I=M$ to find $t \in T$ such that $t \notin \cup\{(Q+r) \mid Q \in G, r \in D\}$. It follows that for this t, if $Q \in G$ with $y_{1} \notin Q$, then $x_{2}+Q$ is transcendental over $R /(Q \cap R)$ and otherwise, $y_{2} \notin Q$ and $x_{1}+Q$ is transcendental over $R /(Q \cap R)$.

Clearly, $\left|R^{\prime}\right|=|R|$. We now show that R^{\prime} satisfies conditions (2) and (3) for $P C$-subrings. Let $f \in R^{\prime} \cap P$. Then multiplying through by a high enough power of y_{1}, we get $y_{1}^{s} f \in P \cap R\left[x_{2}\right]$. But by the way we chose $t, x_{2}+P$ is transcendental over R, so $P \cap R\left[x_{2}\right]=(0)$. It follows that $f=0$. Now suppose that for some i, we have $g \in\left(Q_{i} \backslash p_{i} T\right) R^{\prime} \cap R^{\prime}$. We know that $y_{1} \notin Q_{i}$ or $y_{2} \notin Q_{i}$. Without loss of generality, suppose $y_{1} \notin Q_{i}$. Then $x_{2}+Q_{i}$ is transcendental over $R /\left(R \cap Q_{i}\right)$. By the argument in the proof of Lemma 2.10, we have that $\left(Q_{i} \backslash p_{i} T\right) R\left[x_{2}\right] \cap R\left[x_{2}\right]=\{0\}$. Now, $g=q z$ for some $q \in\left(Q_{i} \backslash p_{i} T\right)$ and $z \in R^{\prime}$. Multiplying through by a high enough power of y_{1}, we get $y_{1}^{s} g=q\left(y_{1}^{s} z\right)$, where $y_{1}^{s} g \in R\left[x_{2}\right]$ and $y_{1}^{s} z \in R\left[x_{2}\right]$. So we have $y_{1}^{s} g \in\left(Q_{i} \backslash p_{i} T\right) R\left[x_{2}\right] \cap R\left[x_{2}\right]=\{0\}$. It follows that $g=0$. Now by Lemma 2.2, we have that $S^{\prime}=R_{\left(M \cap R^{\prime}\right)}^{\prime}$ is a $P C$-subring. Since $c \in\left(y_{1}, y_{2}\right) R^{\prime}$, we have $c \in\left(y_{1}, y_{2}\right) S^{\prime}$. Now use Lemma 2.7 to get the desired $P C$-subring S.

We are now ready to prove Theorem 2.13. We will induct on the number of generators of I.

Proof of Theorem 2.13. Let $I=\left(y_{1}, \ldots, y_{m}\right)$. We will induct on m. If $m=1$, then by Lemma 2.14 the theorem holds. Likewise, if $m=2$, then the theorem holds by Lemma 2.17. So suppose $m>2$, and assume the theorem holds for all ideals with $m-1$ generators. Our proof follows the proof of Lemma 4 in [5] closely. We will construct a $P C$-subring S^{\prime} so that $R \subseteq S^{\prime} \subseteq T,\left|S^{\prime}\right|=|R|$, there is an element $c^{*} \in S^{\prime}$ and an ideal J of S^{\prime} generated by $m-1$ elements and $c^{*} \in J T$. S^{\prime} will also satisfy the condition that $S^{\prime} \cap p_{i} T=p_{i} S^{\prime}$ for all $i \in\{1,2, \ldots\}$. Then by our induction assumption, there is a $P C$-subring S satisfying $S^{\prime} \subseteq S \subseteq T,|S|=\left|S^{\prime}\right|, p_{i} T \cap S=p_{i} S$ for each i, and $c^{*} \in J S$. We will then show that $c \in I S$, proving the theorem.

We now work to construct S^{\prime}. Let $J=\left(y_{1}, y_{2}, \ldots, y_{m-1}\right) R$. Since $c \in I T$, we can write $c=y_{1} t_{1}+\cdots+y_{m} t_{m}$ for some $t_{j} \in T$. We first deal with the case where there is no Q_{i} satisfying $\left\{y_{1}, y_{2}, \ldots, y_{m-1}\right\} \subseteq Q_{i}$. Now let $v=t_{m}+u_{1} y_{1}+\cdots+u_{m-1} y_{m-1}$, where we will choose the $u_{j} \in T$ in a strategic way later. Let $R^{\prime}=R[v]$ and $c^{*}=$ $c-y_{m} v$. Then

$$
c^{*}=\left(y_{1} t_{1}+\cdots+y_{m} t_{m}\right)-y_{m}\left(t_{m}+u_{1} y_{1}+\cdots+u_{m-1} y_{m-1}\right),
$$

and so we have that $c^{*} \in J T$. To choose the u_{j} 's, let $G=C \cup\{P\}$. Suppose $Q \in G$ with $y_{1} \notin Q$. Then let $D_{(Q)}$ be a full set of coset representatives for the cosets $z+Q$ that make $\left(t_{m}+z y_{1}\right)+Q$ algebraic over $R /(R \cap Q)$. Let $D=\bigcup_{Q \in G, y_{1} \notin Q} D_{(Q)}$. Use Lemma 2.9 to find u_{1} so that $\left(t_{m}+u_{1} y_{1}\right)+Q$ is transcendental over $R /(Q \cap R)$ for all $Q \in G$ with $y_{1} \notin Q$. Continue this process to get a set $\left\{u_{1}, \ldots, u_{m-1}\right\}$ so that $\left(t_{m}+\right.$ $\left.u_{1} y_{1}+\cdots+u_{m-1} y_{m-1}\right)+Q=v+Q$ is transcendental over $R /(R \cap Q)$ for all $Q \in G$. Since there is no Q_{i} satisfying $\left\{y_{1}, y_{2}, \ldots, y_{m-1}\right\} \subseteq Q_{i}$ such a set $\left\{u_{1}, u_{2}, \ldots, u_{m-1}\right\}$ exists. By Remark 2.11 and Lemma 2.2, we have that $S^{\prime \prime}=R_{\left(R^{\prime} \cap M\right)}^{\prime}$ is a $P C$-subring of T. Now use Lemma 2.7 to get the desired $P C$-subring S^{\prime}. Use induction as explained
in the previous paragraph to get the $P C$-subring S. We are left to show that $c \in I S$. But this is clear since $c=c^{*}+y_{m} v, c^{*} \in J S$ and $v \in S^{\prime}$.

On the other hand, suppose that $\left\{y_{1}, \ldots, y_{m-1}\right\} \subseteq Q_{i}$ for some i. If this were true for infinitely many i 's, then $y_{1} \in Q_{i} \cap R \subseteq p_{i} T$ for infinitely many i 's. But since $p_{i} \in Q_{j}$ if and only if $i=j$, this implies that y_{1} is in infinitely many height one prime ideals of T, a contradiction. So we have that $\left\{y_{1}, \ldots, y_{m-1}\right\} \subseteq Q_{i}$ for finitely many i 's. For such an i, we have $y_{j} \in Q_{i} \cap R \subseteq p_{i} T \cap R=p_{i} R$, and so we can write $y_{j}=$ $p_{i} r_{j}^{\prime}$ for all $j=1,2 \ldots, m-1$, where $r_{j}^{\prime} \in R$. If $\left\{r_{1}^{\prime}, \ldots, r_{m-1}^{\prime}\right\} \subseteq Q_{i}$, repeat this until we get that $y_{j}=p_{i}^{k} s_{j}$ for all $j=1,2 \ldots, m-1$ where $s_{j} \in R$ and $\left\{s_{1}, \ldots, s_{m-1}\right\} \nsubseteq Q_{i}$. If $\left\{s_{1}, \ldots, s_{m-1}\right\} \subseteq Q_{l}$, then repeat the above procedure for p_{l}. Eventually, we get that $y_{j}=d r_{j}$ for every $j=1,2, \ldots, m-1$ where d is a (finite) product of the p_{i} 's, $r_{j} \in R$ and $\left\{r_{1}, \ldots, r_{m-1}\right\} \nsubseteq Q_{i}$ for all i. Now let $w=t_{1} r_{1}+\cdots+t_{m-1} r_{m-1}$. Then $c=$ $t_{m} y_{m}+\left(t_{1} y_{1}+\cdots+t_{m-1} y_{m-1}\right)=t_{m} y_{m}+d\left(t_{1} r_{1}+\cdots+t_{m-1} r_{m-1}\right)=t_{m} y_{m}+d w$. So we have that $c \in\left(y_{m}, d\right) T \cap R$. Use Lemma 2.17 to find a $P C$-subring R^{\prime} of T such that $R \subseteq R^{\prime} \subseteq T,\left|R^{\prime}\right|=|R|, p_{i} T \cap R^{\prime}=p_{i} R^{\prime}$ for all i, and $c \in\left(y_{m}, d\right) R^{\prime}$. Write $c=$ $x_{1} y_{m}+x_{2} d$ with $x_{1}, x_{2} \in R^{\prime}$. Note that x_{1} and x_{2} come from Lemma 2.17 where, since $c=t_{m} y_{m}+d w, w$ takes the role of t_{2}, d the role of y_{2}, y_{m} the role of y_{1}, and t_{m} the role of t_{1} in Lemma 2.17 so that, in particular, $x_{2}=w-t y_{m}$ for some $t \in T$. By the way, w is defined, we have that $x_{2}=w-t y_{m} \in\left(r_{1}, r_{2}, \ldots, r_{m-1}, y_{m}\right) T \cap R^{\prime}$. Now let $I^{*}=\left(r_{1}, \ldots, r_{m-1}, y_{m}\right) R^{\prime}$ and $J^{*}=\left(r_{1}, \ldots, r_{m-1}\right) R^{\prime}$. Then $\left\{r_{1}, \ldots, r_{m-1}\right\} \nsubseteq$ Q_{i} for all i. So we can use the result from the previous paragraph with $c=x_{2}$ to construct a $P C$-subring S^{\prime} so that $R^{\prime} \subseteq S^{\prime} \subseteq T,\left|S^{\prime}\right|=\left|R^{\prime}\right|$, and an element $c^{*}=$ $x_{2}-y_{m} v \in S^{\prime}$ with $c^{*} \in J^{*} T$ and $v \in S^{\prime}$. Also, we have that $S^{\prime} \cap p_{i} T=p_{i} S^{\prime}$ for all i. Now we use our induction assumption as explained in the first paragraph of this proof to get S. This gives us that $c^{*}=x_{2}-y_{m} v \in J^{*} S$. We have left to show that $c \in I S$. We have that $c=x_{1} y_{m}+x_{2} d=x_{1} y_{m}+\left(c^{*}+y_{m} v\right) d=c^{*} d+\left(x_{1}+v d\right) y_{m}$. As $c^{*} \in J^{*} S$, we have that $c^{*} d \in\left(y_{1}, \ldots, y_{m-1}\right) S$. We also have that $x_{1}+v d \in S$ and so $c \in I S$ as desired.

Theorem 2.18. Let $(T, M), C, P$, and $\left\{p_{i}\right\}$ be as in Definition 2.1 with the set C containing $k<\infty$ elements. Then Theorem 2.13 holds even if we remove the condition that T is a UFD.

Proof. We induct on the number of generators of I. Suppose I is generated by m elements. If $m=1$, then we can use Lemma 2.14 since we did not use in that proof that T was a UFD. So for the rest of the proof, we assume $m>1$.

Let $I=\left(y_{1}, y_{2}, \ldots, y_{m}\right)$. First suppose that $y_{j} \in p_{1} T$ for all $j=1,2, \ldots, m$. Then since $p_{1} T \cap R=p_{1} R$, we can write $y_{j}=p_{1} y_{j}^{\prime}$ for each j to obtain $I=p_{1} I^{\prime}$, where $I^{\prime}=\left(y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{m}^{\prime}\right)$. Now $c \in p_{1} T \cap R=p_{1} R$, so we have $c / p_{1} \in I^{\prime}$. We continue this process (which must terminate at some point since T is Noetherian) until we have an ideal $J_{1}=\left(z_{1}, z_{2}, \ldots, z_{m}\right)$ satisfying $z_{j} \notin p_{1} T$ for some j and such that there is a $d_{1} \in R$ so that $d_{1} J_{1}=I$ and $c / d_{1} \in J_{1}$. Repeat this process with the y_{j} 's replaced by the z_{j} 's and p_{1} replaced by p_{2} to find an ideal $J_{2}=\left(w_{1}, w_{2}, \ldots, w_{m}\right)$ satisfying $w_{j} \notin p_{1} T, w_{l} \notin p_{2} T$ for some j and l and such that there is a d_{2} so that $d_{2} J_{2}=I$ and $c / d_{2} \in J_{2}$. Continue until we get an ideal $J_{k}=\left(u_{1}, u_{2}, \ldots, u_{m}\right)$ satisfying the condition that given $p_{i} T$, there is a j such that $u_{j} \notin p_{i} T$ and so that there is a d_{k} with $d_{k} J_{k}=I$ and $c / d_{k} \in J_{k}$. If there exists a $P C$-subring S such that $c / d_{k} \in J_{k} S$, then $c \in d_{k} J_{k} S=I S$. Thus it suffices to prove the theorem assuming
there is no p_{i} with $y_{j} \in p_{i} T$ for all $j=1,2, \ldots, m$. Note that since $p_{i} T \cap R=p_{i} R$, this is the same as assuming there is no p_{i} with $y_{j} \in p_{i} R$ for all $j=1,2, \ldots, m$. We assume this for the rest of the proof.

We now show that we can find a set $\left\{z_{1}, z_{2}, \ldots, z_{m}\right\} \subset R$ such that $I=$ $\left(z_{1}, z_{2}, \ldots, z_{m}\right)$ and $z_{1} \notin p_{i} R$ for all $i=1,2, \ldots, k$. If $y_{1} \notin p_{i} R$ for all $i=1,2, \ldots, k$, then choose $z_{i}=y_{i}$, and we are done. Now, set $x_{1}=y_{1}$, and define $\pi\left(x_{i}\right)=\left\{p_{j} \mid x_{i} \notin\right.$ $\left.p_{j} R\right\}$. Let $x_{l}=x_{l-1}+r_{l} y_{l}$, where $r_{l}=\prod_{p_{i} \in \pi\left(x_{l-1}\right)} p_{i}$. We claim that $I=\left(x_{m}, y_{2}, \ldots, y_{n}\right)$ and $x_{m} \notin p_{i} R$ for all $i=1,2, \ldots, k$. The first statement is clear, since $x_{m}=y_{1}+$ $r_{2} y_{2}+\cdots+r_{m} y_{m} \in I$ and $y_{1}=x_{m}-r_{2} y_{2}-\cdots-r_{m} y_{m} \in\left(x_{m}, y_{2}, \ldots, y_{n}\right)$. To prove the second statement, fix i, and choose the smallest j such that $y_{j} \notin p_{i} R$. We know such a j exists from the previous paragraph. We claim $x_{j} \notin p_{i} R$. If $j=1$, then $x_{1} \notin p_{i} R$. Now suppose $j>1$. Then by the choice of j, we have that $y_{\ell} \in p_{i} R$ for all $\ell<j$, so $x_{j-1} \in p_{i} R$. Now $x_{j}=x_{j-1}+r_{j} y_{j}$. We know that $y_{j} \notin p_{i} R$ and by construction of r_{j}, we have $r_{j} \notin p_{i} R$. Since $Q_{i} \cap R=p_{i} R$, we know $p_{i} R$ is a prime ideal of R. It follows that $r_{j} y_{j} \notin p_{i} R$ and so $x_{j} \notin p_{i} R$. Now, $x_{j+1}=x_{j}+r_{j+1} y_{j+1}$ and $r_{j+1} \in p_{i} R$. It follows that $x_{j+1} \notin p_{i} R$. Continue until we get that $x_{m} \notin p_{i} R$. Choosing $z_{1}=x_{m}$ and $z_{i}=y_{i}$ for $i=2,3, \ldots, m$ we get the desired set $\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}$.

By the above paragraph, we can assume that $I=\left(y_{1}, y_{2}, \ldots, y_{m}\right)$ and $y_{2} \notin p_{i} R$ for all $i=1,2, \ldots, k$. Note that this implies $y_{2} \notin Q_{i}$ for every i. Since $c \in I T \cap R$, we can write $c=t_{1} y_{1}+\cdots+t_{m} y_{m}$ for $t_{i} \in T$. Set $x_{1}=t_{1}+y_{2} t$ and $x_{2}=t_{1}-y_{2} t$ for some $t \in T$ which we will choose later. Now we have $c=x_{1} y_{1}+x_{2} y_{2}+t_{3} y_{3}+\cdots+$ $t_{n} y_{n}$. Our goal is to adjoin x_{1} to our subring R without disturbing the $P C$-subring properties.

Let $G=$ Ass $T \cup\{P\} \cup C$. For each $Q \in G$, let $D_{(Q)}$ be the full set of coset representatives of the cosets $t+Q$ that make $t_{1}+y_{2} t+Q$ algebraic over $R /(R \cap Q)$. Let $D=\bigcup_{Q \in G} D_{(Q)}$. Note if $\left(t_{1}+y_{2} t\right)+Q=\left(t_{1}+y_{2} t^{\prime}\right)+Q$, then $y_{2}\left(t-t^{\prime}\right) \in Q$, and since $y_{2} \notin Q$, we have $t+Q=t^{\prime}+Q$. Thus for all $Q \in G$, we have that if $t+Q \neq$ $t^{\prime}+Q$, then $\left(t_{1}+y_{2} t\right)+Q \neq\left(t_{1}+y_{2} t\right)+Q$. This argument shows that $|D|=|R|<$ $|T|=|T / M|$.

We now use Lemma 2.9 with $I=T$ to find an element $t \in T$ such that $t \notin$ $\bigcup\{r+P \mid r \in D, P \in G\}$. Thus we have that $x_{1}+Q=t_{1}+y_{2} t+Q$ is transcendental over $R /(R \cap Q)$ for all $Q \in G$. So by the proof of Lemma 2.10 we have $S^{\prime}=$ $R\left[x_{1}\right]_{\left(R\left[x_{1}\right] \cap M\right)}$ is a $P C$-subring. Now use Lemma 2.7 to get a $P C$-subring so that $p_{i} T \cap$ $S^{\prime \prime}=p_{i} S^{\prime \prime}$ for all i. Let $J=\left(y_{2}, \ldots, y_{m}\right) S^{\prime \prime}$ and $c^{*}=c-y_{1} x_{1}$. Clearly, $c^{*} \in J T \cap S^{\prime \prime}$, and so by induction, we can find a $P C$-subring S of T such that $S^{\prime \prime} \subseteq S \subseteq T$ and $c^{*} \in J S$. So $c^{*}=s_{2} y_{2}+\cdots+s_{m} y_{m}$ for some $s_{i} \in S$. Therefore, $c=x_{1} y_{1}+s_{2} y_{2}+\cdots+$ $s_{m} y_{m} \in I S$ and the result follows.

Lemma 2.19. Let $(T, M), C, P$, and $\left\{p_{i}\right\}$ be as in Definition 2.1 with the extra condition that for each i if $Q \in \operatorname{Ass}\left(T / p_{i} T\right)$, we have $Q \subseteq Q_{i}$. Suppose further that T is a UFD and $|T|=|T / M|$. Let $(R, R \cap M)$ be a $P C$-subring of T such that $p_{i} T \cap R=$ $p_{i} R$ for every i, let J be an ideal of T with $J \nsubseteq P$ and $J \nsubseteq Q$ for all $Q \in C$, and let $u+J \in T / J$. Then there exists a PC-subring S of T such that:
(1) $R \subseteq S \subseteq T$;
(2) $|S|=|R|$;
(3) $u+J$ is in the image of the map $S \rightarrow T / J$;
(4) If $u \in J$, then $S \cap J \nsubseteq Q$ for all $Q \in C$;
(5) For every finitely generated ideal I of S, we have $I T \cap S=I$.

Proof. We first apply Lemma 2.10 to find a $P C$-subring R^{\prime} of T satisfying conditions 1, 2, 3, and 4 and such that $p_{i} T \cap R^{\prime}=p_{i} R^{\prime}$ for each i. We will now construct the desired S such that S satisfies conditions 2 and 5 and $R^{\prime} \subseteq S \subseteq T$ which will ensure that the first, third, and fourth conditions of the lemma hold true. Let $\Omega=\left\{(I, c) \mid I\right.$ is a finitely generated ideal of R^{\prime} and $\left.c \in I T \cap R^{\prime}\right\}$. Letting $I=R^{\prime}$, we see that $|\Omega| \geq\left|R^{\prime}\right|$. Since R^{\prime} is infinite, the number of finitely generated ideals of R^{\prime} is $\left|R^{\prime}\right|$, and therefore $\left|R^{\prime}\right| \geq|\Omega|$, giving us the equality $\left|R^{\prime}\right|=|\Omega|$. Well order Ω so that it does not have a maximal element and let 0 denote its first element. We will now inductively define a family of $P C$-subrings of T, one for each element of Ω. Let $R_{0}=R^{\prime}$, and let $\alpha \in \Omega$. Assume that R_{β} has been defined for all $\beta<\alpha$ and that $p_{i} T \cap$ $R_{\beta}=p_{i} R_{\beta}$ and $\left|R_{\beta}\right|=|R|$ hold for all $\beta<\alpha$. If $\gamma(\alpha)<\alpha$ and $\gamma(\alpha)=(I, c)$, then define R_{α} to be the $P C$-subring obtained from Theorem 2.13 so that $c \in I R_{\alpha}$. Note that clearly $p_{i} T \cap R_{\alpha}=p_{i} R_{\alpha}$ and $\left|R_{\alpha}\right|=\left|R_{\gamma(\alpha)}\right|=|R|$. If on the other hand $\gamma(\alpha)=\alpha$, define $R_{\alpha}=\bigcup_{\beta<\alpha} R_{\beta}$. By Lemma $2.3 R_{\alpha}$ is a $P C$-subring with $\left|R_{\alpha}\right|=|R|$. Furthermore, if $t \in p_{i} T \cap R_{\alpha}$ for some i, then $t \in R_{\beta}$ for some $\beta<\alpha$, and so $t \in p_{i} T \cap R_{\beta}=p_{i} R_{\beta} \subseteq$ $p_{i} R_{\alpha}$. Thus $p_{i} T \cap R_{\alpha}=p_{i} R_{\alpha}$.

Now let $R_{1}=\bigcup_{\alpha \in \Omega} R_{\alpha}$. We see from Lemma 2.3 that R_{1} is a $P C$-subring and $\left|R_{1}\right|=\left|R_{0}\right|=|R|$. Also, since we know by induction that $p_{i} T \cap R_{\alpha}=p_{i} R_{\alpha}$ for all $\alpha \in$ Ω we see by the same argument made at the end of the last paragraph that $p_{i} T \cap$ $R_{1}=p_{i} R_{1}$ for all i. Furthermore, notice that if I is a finitely generated ideal of R_{0} and $c \in I T \cap R_{0}$, then $(I, c)=\gamma(\alpha)$ for some $\alpha \in \Omega$ with $\gamma(\alpha)<\alpha$. It follows from the construction that $c \in I R_{\alpha} \subseteq I R_{1}$. Thus $I T \cap R_{0} \subseteq I R_{1}$ for every finitely generated ideal I of R_{0}.

Following this same pattern, build a $P C$-subring R_{2} of T with $\left|R_{2}\right|=\left|R_{1}\right|=$ $|R|$ and $p_{i} T \cap R_{2}=p_{i} R_{2}$ for all i and such that $R_{1} \subseteq R_{2} \subseteq T$ and $I T \cap R_{1} \subseteq I R_{2}$ for every finitely generated ideal I of R_{1}. Continue to form a chain $R_{0} \subseteq R_{1} \subseteq R_{2} \subseteq \cdots$ of $P C$-subrings of T such that $I T \cap R_{n} \subseteq I R_{n+1}$ for every finitely generated ideal I of R_{n} and $\left|R_{j}\right|=\left|R_{0}\right|$ for all j.

We now claim that $S=\bigcup_{i=1}^{\infty} R_{i}$ is the desired $P C$-subring. To see this, first note $R \subseteq S \subseteq T$ and that we know from Lemma 2.3 that S is indeed a $P C$ subring and $|S|=|R|$. Now set $I=\left(y_{1}, y_{2}, \ldots, y_{k}\right) S$, and let $c \in I T \cap S$. Then there exists an $N \in \mathbb{N}$ such that $c, y_{1}, \ldots, y_{k} \in R_{N}$. Thus $c \in\left(y_{1}, \ldots, y_{k}\right) T \cap R_{N} \subseteq$ $\left(y_{1}, \ldots, y_{k}\right) R_{N+1} \subseteq I S$. From this it follows that $I T \cap S=I$, so the fifth condition of the statement of the lemma holds.

We are ready to prove the version of our main result, where we do not require that A be excellent.

Theorem 2.20. Let $(T, M), C, P$, and $\left\{p_{i}\right\}$ be as in Definition 2.1 with the extra condition that for each if $Q \in \operatorname{Ass}\left(T / p_{i} T\right)$, we have $Q \subseteq Q_{i}$. Suppose further that T is a UFD and $|T|=|T / M|$. Suppose that a PC-subring of $T,(R, R \cap M)$, exists. Then there exists a local UFD $A \subseteq T$ such that:
(1) $p_{i} \in A$ for all i;
(2) $\widehat{A}=T$;
(3) $A \cap P=(0)$ and if J is a prime ideal of T with $J \cap A=(0)$, then $J \subseteq P$ or $J \subseteq Q_{i}$ for some i;
(4) For each i, $p_{i} A$ is a prime ideal in A and has a local formal fiber with maximal ideal Q_{i};
(5) If J is an ideal of T satisfying $J \nsubseteq P$ and $J \nsubseteq Q_{i}$ for all $i \in\{1,2, \ldots\}$, then the map $A \rightarrow T / J$ is onto and $J \cap A \nsubseteq Q$ for all $Q \in C$.

Proof. Let $G=C \cup\{P\}$ and $\Omega=\{u+J \in T / J \mid J$ is an ideal of T with $J \nsubseteq Q$ for all $Q \in G\}$. Since T is infinite and Noetherian, $\mid\{J$ is an ideal of T with $J \nsubseteq$ Q for all $Q \in G\}|\leq|T|$. Also, if J is an ideal of T, then $| T / J|\leq|T|$. It follows that $|\Omega| \leq|T|$. Well order Ω so that each element has fewer than $|\Omega|$ predecessors. Let 0 denote the first element of Ω. Apply Lemma 2.7 to find a $P C$-subring R_{0}^{\prime} with $R \subseteq R_{0}^{\prime}$ such that for each $i, p_{i} T \cap R_{0}^{\prime}=p_{i} R_{0}^{\prime}$ and $\left|R_{0}^{\prime}\right|=|R|$. Next apply Lemma 2.19 with $J=M$ to find a $P C$-subring R_{0} with $R_{0}^{\prime} \subseteq R_{0}$ such that $I T \cap R_{0}=I$ for every finitely generated ideal I of R_{0} and $\left|R_{0}\right|=\left|R_{0}^{\prime}\right|=|R|$.

Starting with R_{0}, recursively define a family of $P C$-subrings as follows. Let $\alpha \in \Omega$, and assume that R_{β} has already been defined to be a $P C$-subring for all $\beta<\alpha$ with $I T \cap R_{\beta}=I R_{\beta}$ for every finitely generated ideal I of R_{β} and $\left|R_{\beta}\right|=\sup _{\delta<\beta}\{\mid\{\omega \in$ $\Omega \mid \omega<\beta\}\left|,\left|R_{\delta}\right|\right\}$. Then $\gamma(\alpha)=u+J$ for some ideal J of T with $J \nsubseteq Q$ for every $Q \in G$. If $\gamma(\alpha)<\alpha$, use Lemma 2.19 to obtain a $P C$-subring R_{α} with $\left|R_{\alpha}\right|=\left|R_{\gamma(\alpha)}\right|$ such that $R_{\gamma(\alpha)} \subseteq R_{\alpha} \subseteq T, u+J$ is in the image of the map $R_{\alpha} \rightarrow T / J$ and $I T \cap R_{\alpha}=I$ for every finitely generated ideal I of R_{α}. Moreover, this gives us that $R_{\alpha} \cap J \nsubseteq Q$ for every $Q \in C$ if $u \in J$. Also, since $\left|R_{\alpha}\right|=\left|R_{\gamma(\alpha)}\right|$, and we have that $\left|R_{\alpha}\right|=\sup _{\delta<\alpha}\{\mid\{\omega \in$ $\Omega \mid \omega<\alpha\}\left|,\left|R_{\delta}\right|\right\}$.

If $\gamma(\alpha)=\alpha$, define $R_{\alpha}=\bigcup_{\beta<\alpha} R_{\beta}$. Then by Lemma 2.3, we see that R_{α} is a $P C$-subring of T. Moreover, $\left|R_{\alpha}\right|=\sup _{\delta<\alpha}\left\{|\{\omega \in \Omega \mid \omega<\alpha\}|,\left|R_{\delta}\right|\right\}$. Now let $I=\left(y_{1}, \ldots, y_{k}\right)$ be a finitely generated ideal of R_{α}, and let $c \in I T \cap R_{\alpha}$. Then $\left\{c, y_{1}, \ldots, y_{k}\right\} \subseteq R_{\beta}$ for some $\beta<\alpha$. By the inductive hypothesis, $\left(y_{1}, \ldots, y_{k}\right) T \cap$ $R_{\beta}=\left(y_{1}, \ldots, y_{k}\right) R_{\beta}$. As $c \in\left(y_{1}, \ldots, y_{k}\right) T \cap R_{\beta}$, we have that $c \in\left(y_{1}, \ldots, y_{k}\right) R_{\beta} \subseteq I$. Hence $I T \cap R_{\alpha}=I$.

We now know by induction that for each $\alpha \in \Omega, R_{\alpha}$ is a $P C$-subring with $\left|R_{\alpha}\right|=\sup _{\delta<\alpha}\left\{|\{\omega \in \Omega \mid \omega<\alpha\}|,\left|R_{\delta}\right|\right\}$ and $I T \cap R_{\alpha}=I$ for all finitely generated ideals I of R_{α}. We claim that $A=\bigcup_{\alpha \in \Omega} R_{\alpha}$ is the desired domain.

First note that by construction, condition (5) of the lemma is satisfied. We now show that the completion of A is T. Note that as Q is nonmaximal in T for all $Q \in G$, we have that $M^{2} \nsubseteq Q$ for all $Q \in G$. Thus, by the construction, the map $A \rightarrow$ T / M^{2} is onto. Furthermore, by an argument identical to the one used to show that $I T \cap R_{\alpha}=I$ for all finitely generated ideals I of R_{α} in the case $\gamma(\alpha)=\alpha$, we know $I^{\prime} T \cap A=I^{\prime}$ for all finitely generated ideals I^{\prime} of A. It follows from Proposition 2.8 that A is Noetherian and $\widehat{A}=T$. Since the completion of A is a UFD, A must also be a UFD.

Since each R_{α} is a $P C$-subring, we have that $A \cap P=(0)$. If J is a prime ideal of T with $J \nsubseteq P$ and $J \nsubseteq Q_{i}$ for all i, then by condition (5) $A \cap J \nsubseteq Q_{i}$. It follows that $A \cap J \neq(0)$. So, (3) holds for the lemma.

Now we show that the formal fiber of $p_{i} A$ is local with maximal ideal Q_{i}. Since each R_{α} is a $P C$-subring, by the argument in Lemma 2.3, we know that $\left(\left(Q_{i} \backslash p_{i} T\right) A\right) \cap A=\{0\}$ for all i and so in particular $\left(Q_{i} \backslash p_{i} T\right) \cap A=\emptyset$ for all i. Thus $Q_{i} \cap A=p_{i} T \cap A=p_{i} A$ for each i, and so $p_{i} A$ is a prime ideal of A, and Q_{i} is
in its formal fiber. Let J be a prime ideal of T with $J \nsubseteq Q_{i}$. We shall show that $J \cap A \neq p_{i} A$. If $J \subseteq P$, then $J \cap A=(0)$. If $J \subseteq Q_{j}$ for some $j \neq i$, then $J \cap A=$ $p_{j} A \neq p_{i} A$. So suppose $J \nsubseteq Q$ for all $Q \in G$. Then by condition (5), $J \cap A \nsubseteq Q_{i}$. It follows that $J \cap A \neq p_{i} A$. Hence the formal fiber of $p_{i} A$ is local with maximal ideal Q_{i}.

Note that the only reason we need to assume T is a UFD is to invoke Theorem 2.13. Using Theorem 2.18 in place of Theorem 2.13, we have the following theorem, which is a generalization of Theorem 2.13 in [2].

Theorem 2.21. Let $(T, M), C, P$, and $\left\{p_{i}\right\}$ be as in Definition 2.1 with the extra condition that for each if $Q \in \operatorname{Ass}\left(T / p_{i} T\right)$, we have $Q \subseteq Q_{i}$. Suppose further that C is a finite set and $|T|=|T / M|$. Suppose that a PC-subring of $T,(R, R \cap M)$, exists. Then there exists a local domain $A \subseteq T$ such that:
(1) $p_{i} \in A$ for all i;
(2) $\widehat{A}=T$;
(3) $A \cap P=(0)$, and if J is a prime ideal of T with $J \cap A=(0)$, then $J \subseteq P$ or $J \subseteq Q_{i}$ for some i;
(4) For each $i, p_{i} A$ is a prime ideal in A and has a local formal fiber with maximal ideal Q_{i};
(5) If J is an ideal of T satisfying $J \nsubseteq P$ and $J \nsubseteq Q_{i}$ for all $i \in\{1,2, \ldots\}$, then the map $A \rightarrow T / J$ is onto and $J \cap A \nsubseteq Q$ for all $Q \in C$.

Proof. Proceed in the same manner as the proof of Theorem 2.20 using Theorem 2.18 in place of Theorem 2.13. Note that by Remark 2.12, the set G used in the proof of Theorem 2.20 works even if T is not an integral domain.

In light of Theorems 2.20 and 2.21, it is important to show that, for many complete local rings, a $P C$-subring indeed does exist. The next two lemmas are dedicated to showing that $P C$-subrings exist in certain cases.

Lemma 2.22. Let (T, M) be a complete local ring such that $|T / M|=|T|$, and let P be a nonmaximal prime ideal of T. Let $\left\{q_{1}, q_{2}, \ldots\right\}$ be a (nonempty) countable or finite set of nonzero prime elements of T. For each q_{i}, let Q_{i} be a nonmaximal prime ideal of T satisfying the property that $q_{j} \in Q_{i}$ if and only if $i=j$. Suppose also that $P \cap \Pi=(0)$, $Q \cap \Pi=(0)$ for all $Q \in$ Ass T, and for all $i, Q_{i} \cap \Pi=(0)$ where Π is the prime subring of T. Then there exists a PC-subring of T with respect to a set $\left\{p_{1}, p_{2}, \ldots\right\}$, where $C=\left\{Q_{1}, Q_{2}, \ldots\right\}$ and p_{i} is an associate of q_{i} for every i.

Proof. Let $R_{0}=\Pi_{(M \cap \Pi)}$. Then it is easy to see R_{0} satisfies all conditions for being a $P C$-subring with respect to the set $\left\{q_{1}, q_{2}, \ldots\right\}$ except the conditions that R_{0} be infinite and $q_{i} \in R_{0}$ for every i. Let $n>0$ and assume inductively that for $i<n$ the rings R_{i} and elements $p_{i} \in T$ have been constructed so that the following conditions hold:
(1) $\left(R_{i}, R_{i} \cap M\right)$ is a subring of T;
(2) R_{i} is (infinitely) countable for $i>0$;
(3) p_{i} is an associate of q_{i};
(4) $p_{j} \in R_{i}$ for $j \leq i$;
(5) $\left(Q_{j} \backslash p_{j} T\right) R_{i} \cap R_{i}=\{0\}$ for $j \leq i$;
(6) $R_{i} \cap P=(0)$ and if P^{\prime} is an associated prime ideal of T, then $R_{i} \cap P^{\prime}=(0)$;
(7) $R_{i} \cap Q_{j}=(0)$ for $j>i$.

We now work to define the ring R_{n} and the element p_{n}. Use Lemma 4 from [7] to find a unit t_{n} satisfying $q_{n} t_{n}+Q$ is transcendental over $R_{n-1} /\left(Q \cap R_{n-1}\right)$ for all $Q \in$ $\{P\} \cup\{(0)\} \cup$ Ass $T \cup C \backslash\left\{Q_{n}\right\}$. Let $p_{n}=q_{n} t_{n}, S=R_{n-1}\left[p_{n}\right]$ and $R_{n}=S_{(S \cap M)}$. We claim that R_{n} and p_{n} satisfy the above conditions (1)-(7) with i replaced by n. We will show that $\left(Q_{n} \backslash p_{n} T\right) R_{n} \cap R_{n}=\{0\}$ and leave the rest of the conditions to the reader.

We first show $Q_{n} \cap R_{n}=p_{n} R_{n}$. Let $f \in Q_{n} \cap R_{n-1}\left[p_{n}\right]$. Then $f=r_{k}\left(p_{n}\right)^{k}+$ $\cdots+r_{1} p_{n}+r_{0}$ where $r_{l} \in R_{n-1}$. So we have that $f-r_{0} \in p_{n} T \subseteq Q_{n}$. Hence, $r_{0} \in$ $Q_{n} \cap R_{n-1}=(0)$. It follows that $f \in p_{n} R_{n-1}\left[p_{n}\right]$. From this, we get that $R_{n} \cap Q_{n}=$ $p_{n} R_{n}$ as desired.

Now suppose $f \in\left(Q_{n} \backslash p_{n} T\right) R_{n} \cap R_{n}$ and $f \neq 0$. Then $f=q s$, where $q \in Q_{n}$, $q \notin p_{n} T$ and $s \in R_{n}$. We can write $f=p_{n}^{t} f^{\prime}$ and $s=p_{n}^{k} s^{\prime}$, where $f^{\prime}, s^{\prime} \in R_{n}$ and $f^{\prime}, s^{\prime} \notin p_{n} T$. So we have $p_{n}^{t} f^{\prime}=q p_{n}^{k} s^{\prime}$. Now if $k \geq t$, we have $f^{\prime} \in Q_{n} \cap R_{n}=p_{n} R_{n}$, a contradiction. So, $k<t$. It follows that $q s^{\prime} \in p_{n} T$. As $p_{n} T$ is prime and $q \notin p_{n} T$, we have that $s^{\prime} \in p_{n} T$, a contradiction. So we have that $\left(Q_{n} \backslash p_{n} T\right) R_{n} \cap R_{n}=\{0\}$.

Now, letting $S=\bigcup_{i=0}^{\infty} R_{i}$ if C is infinite, and $S=\bigcup_{i=0}^{k} R_{i}$ if C contains $k<\infty$ elements, it is not hard to show that S is the desired $P C$-subring of T.

Lemma 2.23. Let $(T, M), C, P$, and $\left\{p_{i}\right\}$ be as in Definition 2.1. Let R_{0} be the prime subring of T and $R_{i}=R_{0}\left[p_{1}, p_{2}, \ldots, p_{i}\right]$ for $i=1,2, \ldots$. Define $S=\bigcup_{i=0}^{\infty} R_{i}$ if C is infinite, and $S=\bigcup_{i=0}^{k} R_{i}$ if C contains $k<\infty$ elements. Suppose $S \cap P=(0)$, $S \cap P^{\prime}=(0)$, whenever P^{\prime} is an associated prime ideal of T and for each $i,\left(Q_{i} \backslash p_{i} T\right) S \cap$ $S=\{0\}$. Then there exists a PC-subring of T with respect to the set $\left\{p_{1}, p_{2}, \ldots\right\}$.

Proof. If C is infinite, we use Lemma 2.2 to see that $S_{(S \cap M)}$ is a $P C$-subring of T. On the other hand, suppose C contains $k<\infty$ elements. Then S may be finite. Let $G=$ Ass $T \cup\{P\} \cup\{(0)\} \cup C$. For each $Q \in G$, let $D_{(Q)}$ be a full set of coset representatives of the cosets $t+Q$ that are algebraic over $R /(R \cap Q)$. Let $D=$ $\cup_{Q \in G} Q$, and note that $|D| \leq|T / M|$. Now use Lemma 2.9 with $I=M$ to find an $x \in M$ such that $x \notin \bigcup\{r+Q \mid r \in D, Q \in G\}$. Let $S^{\prime}=S[x]$ and $S^{\prime \prime}=S_{\left(S^{\prime} \cap M\right.}^{\prime}$. Then $S^{\prime \prime}$ is a $P C$-subring of T with respect to the set $\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$. As the proof of this is similar to other proofs in this article, we leave the details of the proof to the reader.

Theorem 2.24 is our main result.
Theorem 2.24. Let $(T, M), C, P$, and $\left\{p_{i}\right\}$ be as in Definition 2.1 such that the following extra conditions also hold:
(1) For each if $Q \in \operatorname{Ass}\left(T / p_{i} T\right)$, we have $Q \subseteq Q_{i}$;
(2) T is a UFD;
(3) $|T|=|T / M|$;
(4) T contains the rationals;
(5) A PC-subring $(R, R \cap M)$ exists;
(6) T_{P} is a regular local ring and for all $i, T_{Q_{i}}$ and $\left(T / p_{i} T\right)_{Q_{i}}$ are regular local rings.

Then there exists an excellent local UFD $A \subseteq T$ such that:
(1) $p_{i} \in A$ for all i;
(2) $A=T$;
(3) $A \cap P=(0)$, and if J is a prime ideal of T with $J \cap A=(0)$, then $J \subseteq P$ or $J \subseteq Q_{i}$ for some i;
(4) For each i, $p_{i} A$ is a prime ideal in A and has a local formal fiber with maximal ideal Q_{i}.

Proof. The proof is based on the proof of Lemma 3.16 in [3]. First use Theorem 2.20 to construct the ring A. Then all conclusions are clear except that A is excellent. Since T is a domain, A is formally equidimensional. It follows that A is universally catenary. So we must only show that the formal fibers of A are geometrically regular.

Let Q be a nonzero prime ideal of A with $Q \neq p_{i} A$ for all i. Since $P \cap A=(0)$, we have that $Q T \not \subset P$. Suppose $Q T \subseteq Q_{i}$ for some i. Then $Q=Q T \cap A \subseteq Q_{i} \cap A=$ $p_{i} A$, a contradiction. By the construction of A, it follows that the map $A \longrightarrow T / Q T$ is onto and so $A / Q \cong T / Q T$. Now, let $k(Q)=A_{Q} / Q A_{Q}$. Then

$$
T \otimes_{A} k(Q) \cong(T / Q T)_{\overline{A-Q}} \cong(A / Q)_{\overline{A-Q}} \cong A_{Q} / Q A_{Q}=k(Q),
$$

a field. Also note that if L is a finite field extension of $k(Q)$ then we have that

$$
T \otimes_{A} L \cong T \otimes_{A} k(Q) \otimes_{k(Q)} L \cong k(Q) \otimes_{k(Q)} L \cong L,
$$

also a field. It follows that the fiber over Q is geometrically regular.
We now show that the fiber over the zero ideal of A is geometrically regular. By the way we constructed A, if Q is a prime ideal of T with $Q \cap A=(0)$, then $Q \subseteq P$ or $Q \subseteq Q_{i}$ for some i. Now $T \otimes_{A} k((0))$ localized at Q is isomorphic to T_{Q}. Since T_{P} and $T_{Q_{i}}$ are assumed to be regular local rings and $Q \subseteq P$ or $Q \subseteq Q_{i}$ for some i, we have that T_{Q} is a regular local ring. Since T contains the rationals, $k((0))$ is a field of characteristic zero. It follows that the fiber over the zero ideal of A is geometrically regular.

It is left to show that the fibers over $p_{i} A$ are geometrically regular. By the way we constructed A, we have that $T \otimes_{A} k\left(p_{i} A\right)$ is a local ring with maximal ideal Q_{i}. Now, $T \otimes_{A} k\left(p_{i} A\right)$ is isomorphic to $\left(\frac{T}{p_{i} T}\right)_{\overline{A-p_{i}},}$, and so we have that the ring $T \otimes_{A}$ $k\left(p_{i} A\right)$ localized at Q_{i} is isomorphic to $\left(\frac{T}{p_{i} T}\right)_{Q_{i}}$ which is a regular local ring by assumption. Since T contains the rationals, $k\left(p_{i} A\right)$ is a field of characteristic zero, and it follows that the formal fiber of $p_{i} A$ is geometrically regular. Therefore, A is excellent.

By the proof of Theorem 2.24, we know exactly what the formal fibers of A are. Specifically, the formal fiber of A at $p_{i} A$ is the set of prime ideals of T that are contained in Q_{i} and that contain p_{i}. The formal fiber of A at (0) is $\{P\}$ union the set of prime ideals of T that are contained in Q_{i} for some i, but do not contain p_{i}. Now, suppose that Q is a nonzero prime ideal of A with $Q \neq p_{i} A$ for every i. Then we have by the above proof that the formal fiber ring of A at Q, namely, $T \otimes_{A} k(Q)$, is a field. So, there is only one element in the formal fiber of A at Q. In fact, we
know that $Q T \cap A=Q$ and since $A / Q \cong T / Q T$, we have that $Q T$ is a prime ideal of T. So the only element in the formal fiber of A at Q is, therefore, $Q T$.

In light of Theorem 2.18, we have the following theorem for the case when C is finite.

Theorem 2.25. Let $(T, M), C, P$, and $\left\{p_{i}\right\}$ be as in Definition 2.1 such that the following extra conditions also hold:
(1) For each if $Q \in \operatorname{Ass}\left(T / p_{i} T\right)$, we have $Q \subseteq Q_{i}$;
(2) C is a finite set;
(3) $|T|=|T / M|$;
(4) T contains the rationals;
(5) A PC-subring ($R, R \cap M$) exists;
(6) T_{P} is a regular local ring and for all $i, T_{Q_{i}}$, and $\left(T / p_{i} T\right)_{Q_{i}}$ are regular local rings.

Then there exists an excellent local domain $A \subseteq T$ such that:
(1) $p_{i} \in A$ for all i;
(2) $\widehat{A}=T$;
(3) $A \cap P=(0)$ and if J is a prime ideal of T with $J \cap A=(0)$, then $J \subseteq P$ or $J \subseteq Q_{i}$ for some i;
(4) For each $i, p_{i} A$ is a prime ideal in A and has a local formal fiber with maximal ideal Q_{i}.

Proof. Proceed as in the proof of Theorem 2.24 using Theorem 2.21 in place of Theorem 2.20.

We end with an example showing that there is a complete local ring T satisfying the hypotheses of Theorem 2.24.

Example 2.26. Let $T=\mathbb{C}\left[\left[x_{1}, x_{2}, \ldots, x_{n}\right]\right]$ with $n \geq 3$. Define $P=\left(x_{3}, \ldots, x_{n}\right)$ and for $i=1,2, \ldots$, define $q_{i}=x_{1}-i x_{2}$ and $Q_{i}=\left(x_{1}-i x_{2}, x_{3}, \ldots, x_{n}\right)$. Then by Lemma 2.22, there exists a $P C$-subring of T with respect to a set $\left\{p_{1}, p_{2}, \ldots\right\}$, where p_{i} is an associate of q_{i} for every i. It follows from Theorem 2.24 that there exists an excellent local UFD A such that $\alpha(A)=\alpha\left(A / p_{i} A\right)=n-2$ for all i.

ACKNOWLEDGMENT

The authors thank the National Science Foundation for their support of this research via grant DMS-0353634.

REFERENCES

[1] Charters, P., Loepp, S. (2004). Semilocal generic formal fibers. J. Algebra 278(1):370382.
[2] Chatlos, J., Simanek, B., Watson, N. G., Wu, S. X. Semilocal formal fibers of principal prime ideals. Preprint.
[3] Dundon, A., Jensen, D., Loepp, S., Provine, J., Rodu, J. (2007). Controlling formal fibers of principal prime ideals. Rocky Mountain J. Math. 37(6):1871-1891.
[4] Heinzer, W., Rotthaus, C., Wiegand, S. (2006). Generic fiber rings of mixed power series/polynomial rings. J. Algebra 298(1):248-272.
[5] Heitmann, R. C. (1993). Characterization of completions of unique factorization domains. Trans. Amer. Math. Soc. 337(1):379-387.
[6] Heitmann, R. C. (1994). Completions of local rings with an isolated singularity. J. Algebra 163(2):538-567.
[7] Loepp, S. (1997). Constructing local generic formal fibers. J. Algebra 187(1):16-38.
[8] Loepp, S. (2000). Formal fibers at height one prime ideals. J. Pure Appl. Algebra 148(2):191-207.
[9] Matsumura, H. (1988). On the dimension of formal fibres of a local ring. In Algebraic Geometry and Commutative Algebra. Vol. I. Tokyo: Kinokuniya, pp. 261-266.
[10] Rotthaus, C. (1991). On rings with low-dimensional formal fibres. J. Pure Appl. Algebra 71(2-3):287-296.

