
Introduction to Number Theory
Lecture Notes

Adam Boocher (2014-5), edited by Andrew Ranicki (2015-6)

December 4, 2015

1 Introduction (21.9.2015)

These notes will cover all material presented during class. These lectures have been compiled
from a variety of sources, mainly from the recommended books:

• Elementary Number Theory, by Kenneth H. Rosen, 6th Edition, 2011, Pearson. Li-
brary: QA241Ros

• A friendly introduction to number theory by J. H. Silverman, Prentice Hall, 2013.Li-
brary: QA241Sil

These books are both excellent sources of examples, additional practice problems and I
find them to be eminently readable. They are on reserve in the Murray Library.

1.1 A Preview: Pythagorean Triples

(Pink type = either internal or external webreference).
The classical theorem of Pythagoras1 states that if a, b, c are the side lengths of a right
triangle, (c being the hypotenuse) then

a2 + b2 = c2.

In this lecture we shall answer the following

Question 1.1. What are the natural number solutions (a, b, c) to the equation a2+b2 = c2?
Such a solution is called a Pythagorean triple.

Example 1.2. Some easy-to-remember Pythagorean triples are e.g. (3, 4, 5), (5, 12, 13), (8, 15, 17).

A first question we might ask if there are infinitely many such triples. However, we see
that as soon as we have a single solution, we have found infinitely many:

1Extract from the Danny Kaye film Merry Andrew (1958)
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Remark 1.3. If (a, b, c) is a Pythagorean triple, and d is any positive integer then so is
(da, db, dc).

Proof. We just check that

(da)2 + (db)2 = d2(a2 + b2) = d2(c2) = (dc)2.

Given this fact, we define a primitive Pythagorean triple (PPT) to be a Pythagorean
triple such that a, b, c have no common factor. This means that there is no number d that
divides all of a, b, c. We can now rephrase Question 1.1 as: What is the set of PPTs?

As a first step, let’s consider the possible parities of the numbers (the parity of a number
refers to whether the number is even or odd). It’s straightforward to check that the square
of an even number is even, and the square of an odd number is odd. With that in mind, the
only possible solutions to a2 + b2 = c2 must be of the form

odd + odd = even
odd + even = odd

even + even = even

We can rule out the last possibility since that would imply that a, b, c are divisible by 2. We
can also rule out the first possibility: Suppose that

a = 2x+ 1, b = 2y + 1, c = 2z.

Then after simplifying we see that

4x2 + 4x+ 4y2 + 4y + 2 = 4z2.

But this is impossible, since the right hand side is divisible by 4 but the left hand side is not!
Hence we can reformulate Question 1.1 as

Question 1.4. Find all natural number solutions to a2 + b2 = c2 with a odd, b even, and
a, b, c have no common factors.

Remark 1.5. Notice that requiring that a, b, c have no common factor is the same as requir-
ing that no two of them share a common factor. Indeed, if p was a common prime factor,
then if p divides, say c and b, then it divides c2 − b2 and hence it divides a2. But now by
prime factorisation, this means it divides a.

Let’s get to work! We can note that

a2 = c2 − b2 = (c− b)(c+ b)

In other words, the product of (c − b) and (c + b) is a perfect square. We shall now show
that c− b and c+ b are relatively prime. Indeed, suppose that they both shared a common
prime factor d, then certainly d should divide their sum and difference. Thus d divides

(c− b) + (c+ b) = 2c, and (c+ b)− (c− b) = 2b.
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But now b and c have no common factor, so it must be that d divides 2. But d cannot be 2
since c+b is odd! But now as c−b, c+b have no factors in common (i.e. they are relatively
prime) we see that the only way that their product can be a square is if both factors are
squares: the proof relies on unique factorization of integers 2. Here is the proof: for distinct
odd primes p1, p2, . . . , pk, q1, q2, . . . , q` and positive integers e1, e2, . . . , ek, f1, f2, . . . , f` > 1

c− b = pe11 p
e2
2 . . . pekk , c+ b = qf11 q

f2
2 . . . qf``

we have that
a2 = (c− b)(c+ b) = pe11 p

e2
2 . . . pekk q

f1
1 q

f2
2 . . . qf``

so that each of e1, e2, . . . , ek, f1, f2, . . . , f` is even, and c− b, c+ b are both squares. Thus

c+ b = s2 , c− b = t2,

where s > t > 1 are odd integers with no common factors. Then

a =
√

(c− b)(c+ b) =
√
s2t2 = st .

We can now solve for b and c to obtain our first

Theorem 1.6. Every PPT (a, b, c) with a odd satisfies

a = st , b =
s2 − t2

2
, c =

s2 + t2

2
,

where s > t > 1 are chosen to be odd integers with no common factors.

You should notice that we have only completed “half” of this proof. To complete it, we
should show that for every such choice of s, t we actually obtain a PPT, which is immediate
from the algebraic identity

xy = (
x+ y

2
)2 − (

x− y
2

)2

with x = s2, y = t2.
This theorem is quite striking at first glance, but it still leaves a bit to be desired as to

“why” PPTs should have such a special form. Also, we seemed to have gotten lucky with our
even/odd analysis in the proof. Indeed, for many problems in number theory, things won’t
work out this nicely! However, there is a nice method which extends a bit more generally,
which we present here.

1.2 A Geometric Derivation

Notice that if (a, b, c) is a PPT then (a/c, b/c) is a point with rational coordinates on the
unit circle x2 + y2 = 1. As students in the North, we naturally notice that N = (0, 1) is
a point on the circle. Never matter that one of the coordinates is zero, we can worry about
that later. The key insight is to now notice that if (x, y) is another point on the circle with
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N = (0, 1)

(x, y)

Figure 1: Geometric Method of Finding Pythagorean Triples

rational coordinates then the slope of the line between these two points will have rational
slope. The converse is also true, which we prove now:

Suppose that P = (x, y) is a point on the unit circle such that the line between N and
P has a rational slope m. Then m = (y − 1)/x or equivalently y = mx+ 1. Since P lies
on the unit circle, we can conclude that

x2 + (mx+ 1)2 = 1

(1 +m2)x2 + 2mx+ 1 = 1

x((1 +m2)x+ 2m) = 0

This equation describes the set of points that lie on the intersection of the circle and the
line. The solution x = 0 is the point N , and the solution x = (−2m)/(1 +m2) describes
the point P . Using y = mx+ 1 we have proven

Theorem 1.7. Every point on the circle x2 + y2 = 1 with rational coordinates is of the
form

(x, y) =

(
−2m

1 +m2
,
1−m2

1 +m2

)
where m is a rational number. (Except for the point (0,−1) which is the limiting value as
m→∞.)

If we write m = u/v and clear denominators, then we see that this formula becomes:

(x, y) =

(
−2uv

u2 + v2
,
v2 − u2

v2 + u2

)
which if we plug into the equation for the unit circle and simplify we get

x2 + y2 = 1

2to be covered in the next lecture
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(−2uv)2 + (v2 − u2)2 = (v2 + u2)2

(uv)2 +

(
v2 − u2

2

)2

=

(
v2 + u2

2

)2

.

Comparing with 1.6 we see that we’ve found exactly the same points! You may have seen
these formulae in trigonometry: for any angle θ

(sin 2θ, cos 2θ) = (
2 tan θ

1 + tan2 θ
,
1− tan2 θ

1 + tan2 θ
)

with m = − tan θ = tan(π − θ) here.
There are lots of other questions we might want to answer. For example, if c is given,

do there exist a and b so that a2 + b2 = c? If so, how many such a and b are there? For
example

332 + 562 = 652 and 162 + 632 = 652.

It turns out that the a highbrow way to view this question (and others) involves passing to
the so-called ring of Gaussian integers - which involves imaginary numbers. We shall return
to this topic at the end of the course once we have a larger toolkit.

Main Points from Lecture 1:

• Know how to find infinitely many PPTs

• Be able to use the geometric method of using lines with rational slope to find rational
points. Memory of this method is important. Memory of the actual formulas is not.

• Have familiarity with basic divisibility arguments.

2 The Primes (24.9.2015)

Notation: Z = ring of integers {0,±1,±2, . . . };
N = set of positive integers {1, 2, 3, . . . };
Q = field of rational numbers {n/m : m ∈ N, n ∈ Z};
R = field of real numbers.

2.1 Prime Numbers

A positive integer p > 1 is called prime if p 6= mn for all m,n ∈ N with m > 1 and n > 1.
Otherwise (i.e., if c > 1 can be written as c = mn for some m,n ∈ N with m > 1 and n > 1)
then c is called composite.

Theorem 2.1 ( Fundamental Theorem of Arithmetic). Every n ∈ N has a unique represen-
tation as a product of primes:

n = pe11 · · · p
ek
k , where k > 0 and each ej ∈ N.
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[Convention: empty products (here, for n = 1, are = 1, and empty sums are = 0.]
This theorem was proved in Year 1 (in Proofs and Problem-solving). See Martin Liebeck:

A concise introduction to Pure Mathematics, Chapman and Hall 2000. A visualisation of this
theorem can be seen at http://www.datapointed.net/visualizations/math/factorization/
animated-diagrams/

Remark 2.2. We’ve known some version or other of the FTA for most of our lives, and
as such it probably seems like a rather obvious, and daresay, even boring fact. However, it’s
really quite a striking feature of the natural numbers. Later in the course we will encounter
other number systems (i.e. rings) in which unique factorization into primes does not hold.
For an excursion in this direction, take a look at Silverman’s discussion on the E−world, in
which he talks about the set of even numbers.

Proposition 2.3. Suppose p, n,m ∈ N with p prime and p dividing nm (i.e., pr = nm for
some r ∈ N). Then either p | n (“p divides n”) or p | m (or possibly both).

Proof. By Theorem 2.1 every integer r ∈ N has a unique expression as product

r = per0

with e > 0 and r0 a product of primes 6= p. Think of the exponent e as the analogue of the
logarithm of r which only takes note of the powers of p in r, noting that

1. p | r if and only if e > 1, just like x > 1 if and only if log x > 0,

2. for the product r′′ = rr′ of r, r′ ∈ N with r = per0, r
′ = pe

′
r′0

r′′ = pe
′′
r′′0 = pe+e

′
(r0r

′
0)

so that e′′ = e+ e′ just like log xx′ = log x+ log x′.

Do this kind of factorization for r, n,m

r = per0 , n = pfn0 , m = pgm0 .

From pr = nm we have
pe+1r0 = pf+gn0m0 ,

and
e+ 1 = f + g ∈ N

At least one of f, g must be > 1, so that either p | n or p | m.

This result is false for composite numbers, as e.g., 6 = 2 · 3, and so 6 | 2 · 3, but 6 - 2 and
6 - 3. More generally, if c = nm with n > 1, m > 1 (so c composite) then c | nm but c - n
and c - m. In general, if you see a non-example like this, remember it! This is the best way
to remember the hypotheses of theorems.
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Example 2.4. If p is a prime number and p divides 2n then either p divides 2 or p divides
n. We used this fact in the first lecture when we were discussing Pythagorean triples.

Theorem 2.5. If n is composite then it must be divisible by some prime 6
√
n.

Proof. If all prime factors of n are >
√
n then clearly all factors of n are >

√
n. Thus since

n is composite, we have some factorisation n = ab >
√
n
√
n = n, a contradiction.

This gives us a reasonable algorithm to enumerate, the first few primes. Suppose we
wanted to enumerate all primes less than 100. We could write the first 100 numbers down,
and then cross off all multiples of 2, 3, 5, and 7. By the previous theorem, any num-
bers remaining must be prime, since

√
100 = 10. This is called the Sieve of Eratosthenes.

For an animation and more information click: http://en.wikipedia.org/wiki/Sieve_of_
Eratosthenes

2.2 Distribution of the primes

A whole course could be devoted to the distribution of the prime numbers. Basically the main
motivating question asks: How are the primes interspersed among the natural numbers? As
a first step, we know from Euclid that there are infinitely many primes:

Theorem 2.6. (Euclid) There are infinitely many prime numbers.

Proof. Suppose that there were only finitely many primes p1, . . . , pk. Then consider the
integer N = p1 · · · pk + 1. This number is not divisible by any of the pi (it has remainder 1
upon division). However, by Theorem 2.1 it must be divisible by some prime p. Since this p
is none of our pi we have a contradiction. We must not have written down all the primes.

The same proof shows that there are infinitely many odd primes. In other words, there
are infinitely many prime numbers of the form 2k + 1. On the first homework assignment
you will prove that there are infinitely many prime numbers of the form 4k + 3. In fact,
these are the special cases (a, b) = (2, 1) and (4, 3) of a much stronger statement:

Theorem 2.7 (Dirichlet’s Theorem). If a and b are positive integers not divisible by the
same prime then there are infinitely many primes of the form ak + b.

The proof of this theorem is difficult, and is beyond the scope of this course. It is just the
tip of the iceberg concerning questions about the distribution of the primes. My favourite
theorem of this type, for which we do have an elementary proof is the following. It provides
yet another proof that there are infinitely many primes.

Theorem 2.8. The sum of the reciprocals of the primes diverges∑
p prime

1

p
→∞.
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We will need the following tools for the proof:

0. The Fundamental Theorem of Arithmetic.

1. 1/(1− x) = 1 + x+ x2 + · · ·+ xn + · · · .

2. log(1− x) = −x− x2/2− x3/3− · · · − xn/n− · · · .

3. The harmonic series 1 + 1/2 + 1/3 + 1/4 + · · · diverges.

(Tools 1-3 were introduced in Calculus, (recall that the series
∑

1/ns converges if and
only if s > 1.)

Proof. Let n be a natural number. We define the following product:

λ(n) =
∏
p6n

(
1

1− 1
p

)

Our first goal is to prove that λ(n) diverges. To see this, note that we can rewrite each of
the factors as an infinite sum using Tool 1.

λ(n) =

(
1 +

1

2
+

1

22
+ · · ·

)(
1 +

1

3
+

1

32
+ · · ·

)(
1 +

1

5
+

1

52
+ · · ·

)
· · ·

When we expand this product, we will obtain all fractions of the form

1

2a13a2 · · · pakk

where all prime factors 6 n appear. By the fundamental theorem of arithmetic, we’ll get all
the numbers 1, 1

2
, 1
3
, . . . , 1

n
(and many many more). Therefore

λ(n) > 1 + 1/2 + 1/3 + . . .+ 1/n.

Hence as n → ∞, λ(n) → ∞ by Tool 3. In particular this means that log λ(n) → ∞ as
n→∞.

Our second (and final goal) is to relate λ(n) with the series
∑

1/p. To do this, we take
logs. By basic properties of logs of products and reciprocals, we obtain:3

log(λ(n)) =
∑
p6n

− log(1− 1/p).

3If you’re reading these notes, now is a good time to grab a pen and paper and track the following
derivations carefully. The concepts aren’t difficult, but unfortunately the notation can make this seem a bit
intimidating.
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Using Tool 2, we obtain:

− log(1− 1/p) =
1

p
+

1

2p2
+

1

3p3
+

1

4p4
+ · · ·

<
1

p
+

1

p2
+

1

p3
+

1

p4
+ · · ·

=
1

p
(1 +

1

p
+

1

p2
+

1

p3
+

1

p4
+ · · · )

=
1

p
· 1

1− 1/p
=

1

p
· p

p− 1

6
2

p
.

But then this means that

log λ(n) <
∑
p6n

2

p
.

Since the left hand side diverges, we have that
∑

p6n
2
p

diverges. Division by two yields the
result.

This Theorem is somewhat surprising, since for instance the sum 1+1/4+1/9+1/16+· · ·
converges, yet

∑
1/p diverges. Hence it might be appropriate to say that “There are more

prime numbers than square numbers.” However this sentence is pure nonsense without a
proper definition. Along a different track, one way of measuring how many prime numbers
there are is to consider the fraction of natural numbers that the primes comprise.

Consider the function
π(n) = #{primes p 6 n}.

E.g. π(5) = 3, π(100) = 25, and π(5000) = 669. In 1850 Chebyshev proved that there exist
real numbers C1, C2 with 0 < C1 < 1 < C2 such that

C1(n/ log n) < π(n) < C2(n/ log n)

In particular, in the limit we have

lim
π(n)

n
= 0 .

In other words, the primes have density 0 in the natural numbers. For an awesome elementary
proof of this fact, check out http://www.math.udel.edu/~idmercer/primes-density.pdf.

It is interesting to ask how quickly this ratio π(n)/n approaches zero.

Theorem 2.9. When n is large, the number of primes less than x is approximately equal to
x/ lnx. In other words

lim
x→∞

π(x)

x/ ln(x)
= 1.
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This theorem was conjectured by many in the late 18th century, and was first noticed
by observing tables of prime numbers made by hand. It was first proved independently
by Hadamard and de la Valée-Poussin in 1896. Their proofs use complex analysis. An
elementary proof was discovered by Paul Erdös and Atle Selberg in 1949. Proofs from the
Book is a great book, containing many beautiful and elegant proofs of theorems, which is
available for download from within the EASE network. For an excellent story, check out Don
Zagier’s The First 50 Million Prime Numbers, or watch the video of Barry Mazur talking
about the Riemann Hypothesis http://fora.tv/2014/04/25/Riemann_Hypothesis_The_

Million_Dollar_Challenge. We don’t have time in this course to go much more into the
theory of the distribution of the primes, but there are many accessible introductions to this
area.

Finally, it wouldn’t be a lecture about the distribution of the primes if we didn’t include
at least two open conjectures.

The Twin Prime Conjecture is that there are infinitely many primes p such that p+ 2 is
also prime. In 2013 Yitang Zhang proved that there exists an integer N < 7, 000, 000 such
that there is an infinite number of primes p such that p+N is also prime - a rather romantic
story! The current record for the lower bound is that there exists an integer N 6 246 such
that there is an infinite number of primes p such that p + N is also prime: there is up to
date information on the website
http://michaelnielsen.org/polymath1/index.php?title=Bounded gaps between primes.

Conjecture 2.10. (Twin Prime Conjecture) There are infinitely many prime numbers p
such that p+ 2 is also prime. These are called twin primes.

Conjecture 2.11. (Goldbach Conjecture) Every even integer larger than 2 can be written
as a sum of two primes.

There is even a novel about the Goldbach Conjecture. Extra credit (and fame and
fortune) goes to anyone who can solve it!

Main Points from Lecture 2:

• Statement of the Fundamental Theorem of Arithmetic and fluency in using uniqueness
to prove statements such as Prop 2.3.

• Proof of the infinitude of primes and its variants.

• The statement that
∑

1/p diverges.

3 The greatest common divisor, the lowest common

multiple and the Euclidean Algorithm (28.9.2015)

The greatest common divisor (gcd) of n,m ∈ N is, as the name suggests, the largest
integer that divides both of them. Such an integer always exists, as 1 | n and 1 | m (so
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common divisors exist) and clearly no common divisor can exceed min(n,m) (so we are
taking the maximum over a nonempty finite set. To recap: 1 6 gcd(n,m) 6 min(n,m).

In some texts the gcd is called the hcf (“highest common factor”). We will often denote
the gcd of a and b simply by (a, b). In particular, if (a, b) = 1 then we say that a and b are
relatively prime.

The least common multiple (lcm) of n,m ∈ N is the smallest integer that both n and
m divide. Again, such an integer exists, as n and m both divide nm. So clearly

max(n,m) 6 lcm(n,m) 6 nm.

Example 3.1. One way of computing the gcd is to factorize. For example 24 = 23 · 3 and
84 = 22 · 3 · 7. Hence the greatest common factor is 22 · 3 = 12.

As we’ll see shortly, there is a method for computing the gcd that doesn’t involve factoring.
This is a good thing as factoring is quite slow.

Proposition 3.2. Given m,∈ N let p1, . . . , pk be the primes dividing m or n (i.e., mn), and
write

m =
k∏
i=1

peii , n =
k∏
i=1

pfii ,

where ei > 0, fi > 0. Then

(i) gcd(m,n) =
∏k

i=1 p
min(ei,fi)
i ;

(ii) lcm(m,n) =
∏k

i=1 p
max(ei,fi)
i ;

(iii) gcd(m,n) · lcm(m,n) = mn;

(iv)

gcd

(
n

gcd(n,m)
,
lcm(n,m)

n

)
= 1.

Proof. (i) Suppose that d | m. Then dd′ = m say. so any prime dividing d will divide
dd′ = m. Hence d is of the form

d =
k∏
i=1

p
e′i
i , where e′i > 0.

Since d | m, clearly e′i 6 ei.

If also d | n, then e′i 6 fi. so e′i 6 min(ei, fi). But
∏k

i=1 p
min(ei,fi)
i divides both m and

n, so it is their gcd.

(ii) Similarly if m | ` and ` =
∏k

i=1 p
f ′i
i · `′ say, where `′ is a product of primes different

from p1, . . . , pk, then also m |
∏k

i=1 p
f ′i
i , so we can take `′ = 1 (i.e., ignore it!). Hence

k∏
i=1

peii |
k∏
i=1

p
f ′i
i ,
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so that ei 6 f ′i . Similarly n | ` gives fi 6 f ′i . Hence f ′i > max(ei, fi). But clearly m

and n both divide
∏k

i=1 p
max(ei,fi)
i , so this must equal lcm(m,n).

(iii) If e and f are any two real numbers then

min(e, f) + max(e, f) = e+ f,

since one of min(e, f) and max(e, f) is e and the other is f . Hence

gcd(m,n) · lcm(m,n) =
k∏
i=1

p
min(ei,fi)+max(ei,fi)
i =

k∏
i=1

pei+fii = mn.

(iv) We have using (iii) that

gcd

(
n

gcd(n,m)
,
lcm(n,m)

n

)
= gcd

(
n

gcd(n,m)
,

m

gcd(n,m)

)
=

gcd(n,m)

gcd(n,m)
= 1.

Proposition 3.3. Suppose that (a, b) = d. Then (a/d, b/d) = 1.

Proof. Suppose that c = (a/d, b/d) is the gcd. Then a/d = c · k and b/d = c · l. Clearing
fractions we see that a = ckd b = cld. But then cd is a common factor of a and b. Since d
was the gcd(a, b) we must have that cd = d and hence c = 1.

Proposition 3.4. If a, b, c are integers then (a+ cb, b) = (a, b).

Proof. Let d = (a+ cb, b) and e = (a, b). Since e divides a and b it surely divides a+ cb and
b, so e | d. Conversely, since d | b, it follows that if d | a+ cb then d | (a+ cb)− cb and hence
d | a. Thus d divides a and b whence d | e. Since d and e divide one another, they must be
equal.

Question 3.5. If a and b are integers, then what is the set of values that ax+by can take on
as x, y range through all integers? We call such numbers linear combinations of a and b.

This question is related to the postage stamp question which asks if you have postage
stamps of values a and b, what are the possible values of total postage that you can make.
Note in this case, we are only allowed to nonnegative combinations of a and b, whereas in
the Question we allow all integers.

Example 3.6. What integers are of the form 8x+ 12y?
First notice that any integer of this form is definitely a multiple of 4, as it is the gcd of

8 and 12. Further, notice that if we could somehow write 4 = 8x0 + 12y0 then we would be
able to write any multiple of 4 as

4k = 8(kx0) + 12(ky0).

In this case, it’s easy to see that we can indeed write 4 = 8(−1) + 12(1). Thus our answer is
that

{8x+ 12y, |x, y ∈ Z} = {4k | k ∈ Z} = 4Z.
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In general the following is true:

Theorem 3.7. The set of linear combinations of two numbers a and b is equal to the set of
multiples of (a, b)

{ax+ by, |x, y ∈ Z} = {(a, b)k | k ∈ Z} = (a, b)Z.

Proof. As in the example, it is clear that any combination must be a multiple of (a, b) since
this divides bother ax and by. What remains to be shown is that (a, b) can indeed be written
as a linear combination of a and b. To see this, we argue by contradiction. Suppose that d is
the smallest positive integer that is a linear combination of a and b.4 Say that d = am+ bn.
Now by the division algorithm, we have that

a = dq + r, 0 6 r < d.

Now r = a − dq = a − (am + bn)q = (1 −m)a + nqb is yet another linear combination of
a and b. But by assumption, d was the smallest positive such number. Hence r = 0, and
a = qd. Thus d | a. Similarly d | b. Hence d is a common divisor of a and b and now the
first sentence of this proof shows that d = (a, b).

Corollary 3.8. If (a, b) = 1 then there exists m,n ∈ Z with am+ bn = 1.

Theorem 3.7 says something quite useful: That the smallest positive integer which can
be written as a linear combination of a and b is (a, b). In the next section, we exploit this to
create an algorithm to compute (a, b).

3.1 Finding the gcd without factoring - The Euclidean Algorithm

Given a, b ∈ N with a > b (say). Our goal is to compute g = (a, b).
The Division Algorithm is key ingredient: we can first divide b into a to get

a = bq + r (q ∈ N, 0 6 r < b) ,

with q the quotient and r the remainder. Notice that

(a, b) = (b, a− bq) = (b, r)

where the first equality comes from (a, b) = (b, a) and Proposition 3.4.
We can continue with a, b replaced by a1 = b, b1 = r. Apply the division algorithm again:

b = q1r+ r1 say. Then also g = gcd(b, r) = gcd(a1, b1) with a1 > b1. Continue in this way to
obtain a sequence of successively smaller remainders

r0 = r > r1 > · · · > rk > rk+1 = 0 .

The last non-zero remainder is g = gcd(rk, 0) = rk. Note that k 6 b, so there are at most b
iterations.

More formally, the Euclidean Algorithm for finding the greatest common divisor g = (a, b)
of a > b > 1 generates a sequence of ordered pairs an > bn > 1 for n = 0, 1, . . . , k and
rn > rn+1 by the computer ‘pseudo-code’ :

4Why does such a number exist?
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1. START a0 := a, b0 := b

2. APPLY DIVISION an := qnbn + rn

3. an+1 := bn, bn+1 := rn

4. REPEAT DIVISION

5. STOP WHEN rk+1 = 0

6. PRINTOUT “(a, b) = rk”

Example 3.9. Use the Euclidean Algorithm to compute (87, 51):

a0 = b0q0 + r0 87 = 51 · 1 + 36
a1 = b1q1 + r1 51 = 36 · 1 + 15
a2 = b2q2 + r2 36 = 15 · 2 + 6
a3 = b3q3 + r3 15 = 6 · 2 + 3
a4 = b4q4 + r4 6 = 3 · 2 + 0 .

Thus (87, 51) = 3, the last nonzero remainder. If we want to write 3 as a linear combination
of 51 and 87 we can just step backwards through this:

3 = 15− 6(2)

= 15− (36− 15 · 2) · 2 = 15(5)− 36(2)

= (51− 36)(5)− 36(2) = 51(5)− 36(7)

= 51(5)− (87− 51)(7) = 51(12)− 87(7).

Main Points from Lecture 3:

• How to compute the gcd of two numbers from a factorization or from the Euclidean
Algorithm

• The gcd of a, b is an integer combination of a and b.

• All integer combinations of a, b are multiples of the gcd.

4 Linear Diophantine Equations (1.10.2015)

In this lecture we will learn how to solve equations of the form ax + by = c where a, b, c
are integers, and we seek integer solutions (x, y) ∈ Z2 5. The complete algorithmic method
for finding all the integer solutions of ax + by = c will require the ‘Extended Euclidean
Algorithm’ for finding one solution (x, y) of ax + by = g.c.d.(a, b), in a subsequent lecture.
But today we shall concentrate on two questions:

5Do not confuse the ordered pair (x, y) ∈ Z2 with the integer (x, y) = g.c.d.(x, y) ∈ Z
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1. When does ax+ by = c have integer solutions (x, y)?

2. If there exists a solution at all, how many solutions are there altogether?

In subsequent lectures we shall also study the same questions modn, for a given integer
n > 2.

Note that describing the set of real solutions (x, y) ∈ R2 of ax + by = c is easy: if
(a, b) 6= (0, 0) there is a line of solutions, given by y = (c−ax)/b if b 6= 0, and by x = (c−by)/a
if a 6= 0. If (a, b) = (0, 0) there is a solution if and only if c = 0, in which case every (x, y) ∈ R2

is a solution.
However it’s not so clear what to do for integer solutions (x, y) ∈ Z2 of ax + by = c

with (a, b, c) ∈ Z3. We’ll see that the answer comes quickly with the help of the Euclidean
Algorithm.

Let’s work out a few examples to see the salient points:

12x+ 18y = 10

As in our work with linear combinations, we see that the left hand side is always divisible by
(12, 18) = 6. But the right hand side is not. Therefore this equation has no solution. Hence
we have

If ax+ by = c has an integer solution then c must be an integer multiple of g.c.d.(a, b).

This is a direct consequence of Theorem 3.7 from the last lecture: the set of linear
combinations of two numbers a and b is equal to the set of multiples of g.c.d.(a, b)

{ax+ by |x, y ∈ Z} = {g.c.d(a, b)k | k ∈ Z} ⊆ Z .

With that in mind let’s try an example that has a chance of having solutions:

12x+ 18y = 42.

We can divide through by (12, 18) = 6 to obtain 2x+3y = 7, and now we can spot a solution
in our heads: 2(2) + 3(1) = 7. It is instructive to find another solution in a more systematic
way: Notice that the Euclidean Algorithm produces a solution 2(−1) + 3(1) = 1. We can
multiply everything by 7 to obtain 2(−7) + 3(7) = 7. What is the relationship between our
two solutions (x, y) = (2, 1) and (x, y) = (−7, 7)? The answer is the following Theorem

Theorem 4.1. The equation ax+ by = c has an integer solution if and only if c is divisible
by d = g.c.d.(a, b). If this is the case, then there are infinitely many solutions. If (x0, y0) is
one particular solution, then all solutions are of the form

x = x0 − (b/d)n, y = y0 + (a/d)n

where n is an integer.
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Proof. By the discussion preceding this theorem, it is clear that a solution exists only if d | c.
In this case a solution always exists as the Euclidean Algorithm will always yield a solution
to d = as + bt. Multiplying both sides by c/d will yield a solution. To see that there are
infinitely many solutions, let’s check that the ordered pair

(x0 − (b/d)n, y0 + (a/d)n)

is indeed a solution:

a(x0 − (b/d)n) + b(y0 + (a/d)n) = (ax0 + by0)− (ab/d)n+ (ba/d)n = (c) + 0 = c.

Now suppose that (x1, y1) is an arbitrary solution. This means that ax1 + by1 = c. Notice

a(x0 − x1) + b(y0 − y1) = c− c = 0.

This means that a(x0 − x1) = −b(y0 − y1). Let us now divide through by d to obtain

a

d
(x0 − x1) = − b

d
(y0 − y1).

Now since a/d and b/d are relatively prime, we see that a/d | (y0−y1) hence y0−y1 = (a/d)n.
Substituting and canceling, we obtain:

a

d
(x0 − x1) = − b

d

a

d
n

(x0 − x1) = − b
d
n.

In summary we have shown that

x1 = x0 +
b

d
n and y1 = y0 −

a

d
n .

The signs are different from the ones in the statement of the theorem, but since n is allowed
to be positive or negative, this is the same solution set as we required.

The format for the solutions of an inhomogeneous linear Diophantine equation

General solution = homogeneous solution + particular solution

may be familiar to you from the solutions of an inhomogeneous linear differential equation.

Many times we will be interested in knowing the natural number solutions to an equation.
In this case it is possible that there may be no solutions, or only finitely many.6

6Can you think of an equation with no natural number solutions?
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Example 4.2. A farmer wishes to buy 100 animals and spend exactly $100. Cows are $10,
sheep are $3 and pigs are $0.50. Is this possible?

Solution: The system of equations is

c+ s+ p = 100, 10c+ 3s+ 0.50p = 100.

Substituting p = 100− c− s we obtain

10c+ 3s+ 0.50(100− c− s) = 100

20c+ 6s+ 100− c− s = 200

19c+ 5s = 100.

As (19, 5) = 1 this equation will have infinitely many integer solutions. We can find one by
the Euclidean Algorithm.

Scratchwork:
19 = 5(3) + 4, 5 = 4 + 1

1 = 5− 4 = 5− (19− 5(3)) = 19(−1) + 5(4)

100 = 19(−100) + 5(400).

Hence c = −100, s = 400 is one integer solution. By the Theorem, all solutions are of the
form

c = −100− 5n, s = 400 + 19n.

Since we are looking for positive integer solutions, we see that −100−5n > 0 and 400+19n >
0. This yields −20 > n and −21 6 n, hence n = −21 gives the unique solution in positive
integers. This yields

c = 5, s = 1, p = 94.

4.1 Multivariate linear equations over Z
Given integers a1, a2, . . . , an, b, how do we find all (x1, . . . , xn) :

a1x1 + · · ·+ anxn = b? (1)

Important easy cases

1. g = gcd(a1, . . . , an) - b. Then the LHS of (1) is divisible by g, but the RHS is not, so
(1) has no solution in integers.

2. a1 = 1. Then x2, x3, . . . , xn can be chosen to be any integers, with (1) then determining
x1. Clearly this gives all solutions of (1) in this case.
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Example for 1. The equation 6x1 + 8x2 = 11 has no integer solution, as the LHS is
even while the RHS is odd.

Example for 2. The general integer solution of x1 + 7x2 + 9x3 = 3 is (x1, x2, x3) =
(3− 7x2 − 9x3, x2, x3) for x2, x3 arbitrary in Z.

General strategy for solving (1): Make linear changes of variables to successively
reduce the minimum modulus of coefficients of (1). Keep doing this until either

• get case where gcd(a1, a2, . . . , an) - b, so no solution, as in 1. above;

• get a coefficient = 1, and so can solve as in 2. above.

This is best illustrated by an example.

Example. Solve 3x+ 4y + 5z + 6w = 7 for integers x, y, z, w.

Solution. Write equation as 3(x+ y) + y + 5z + 6w = 7, and put u = x+ y. So
3u+ y + 5z + 6w = 7, and x = u− y.
Now choose u, z, w arbitrarily in Z. Then y = 7−3u−5z−6w and x = u−y = −7+4u+

5z+6w. Thus the general solution is (x, y, z, w) = (−7+4u+5z+6w, 7−3u−5z−6w, z, w).

Solution algorithm for solving (1) in integers:

• Pick the ai of smallest modulus. If |ai| = 1, can solve (1) as in 2. above.

• Otherwise, when smallest modulus of ai is > 2: For convenience assume a1 > 0 and it
is the ai of smallest modulus. If all the ai divisible by a1 and a1 - b, then no solution
by 1. above. If all the ai divisible by a1 and a1 | b, then simply divide the equation by
a1. Now the new a1 is = 1, so can solve it by 2. above.

Otherwise,, choose an a1 not divisible by a1 – assume it is a2. Write a2 = qa1 + a′2,
where 0 < a′2 < a1, and put u = x1 + qx2. Then (1) becomes

a1x1 + (qa1 + a′2)x2 + a3x3 · · ·+ anxn = b,

or
a1u1 + a′2x2 + a3x3 · · ·+ anxn = b. (2)

This new equation (2) has smallest coefficient a′2 < a1. So we can repeat the process.
Keep repeating until we get either 1. (so no solution) or 2. (so can write down solution).
In the latter case we use the linear equations generated (e.g., u1 = x1 + qx2) to get
expressions for the original variables.
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4.2 Review of Congruences

We now briefly review properties of congruences. A solid mastery of the basics will be
necessary for the course. At the end of this section will be many problems designed to give
you practice working with congruences. Please let me know if you have any questions either
before or after class (or in an email). The material in this section is found in Rosen 4.1
(Introduction to Congruences)

The congruence a ≡ b mod n means that the difference (a− b) is divisible by n. In other
words, a is equal to a multiple of n plus b. In other words, a = nq + b.

Example 4.3.
15 ≡ 1 mod 7

−3 ≡ 14 mod 17

10 ≡ 0 mod 5

I find it helpful to thing of negative numbers as being “less than a multiple of n”. For
example 30 ≡ −4 mod 17 because “30 is 4 less than a multiple of 17.”

There are multiple ways to represent numbers using congruences, and we call each set of
equivalences a congruence class. For example

· · · − 4 ≡ 1 ≡ 6 ≡ 11 ≡ 16 · · · mod 5

Is the congruence class of the 1 mod 5.

Definition 4.4. A complete system of residues mod n is a set of integers such that every
integer is congruent mod n to exactly one integer in the set. A least positive reside for an
integer a is the smallest positive integer b such that a ≡ b mod n.

Example 4.5. Modulo 5, a complete system of residues if {0, 1, 2, 3, 4}. Another is {−2,−1, 0, 1, 2}.
Yet another is {0, 1, 2, 3, 19}.

Arithmetic with congruences behaves extremely well, as we summarize here:

Theorem 4.6. If a, b, c, d and n are integers with n > 0 and a ≡ b mod n and c ≡ d mod n
then

a+ c ≡ b+ d mod n.

a− c ≡ b− d mod n.

ac ≡ bd mod n.

The proofs of these exercises follow from the definition of modular arithmetic. The third
property is a special case of Problem 2c on the first Homework. We present the proof here.

Proof. If a ≡ b mod n then a = kn+ b for some integer k. Similarly, c = `n+ d. Thus

ac = (kn+ b)(`n+ d) = k`n2 + b`n+ dkn+ db

and therefore ac− bd = n(k`n+ b`+ dk) is a multiple of n. Hence ac ≡ bd mod n.
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Example 4.7. Compute: 93·17 mod 6. Since 93 ≡ 3 mod 6 and 17 ≡ −1 mod 6 we conclude
that 93 · 17 = −3 mod 6.

Finally, we discuss exponents and their role in modular arithmetic. It is not true that
we can reduce the exponents mod n in computations:

210 ≡ 1024 ≡ 4 mod 5

20 ≡ 1 mod 5.

However, two algorithms exist which can help us readily compute high powers of numbers
mod n.

In general, the method that works best is successive squaring. Simply compute successive
squares, reducing mod n when necessary. Then use these numbers to compute the desired
power. This is best illustrated by an example.

Example 4.8. Compute the least positive residue mod 7 of 237. We compute powers, 22 ≡ 4
24 ≡ 42 ≡ 2
28 ≡ 22 ≡ 4
216 ≡ 42 ≡ 2
232 ≡ 22 ≡ 4
Thus 237 = 232 · 24 · 21 = 4 · 2 · 2 ≡ 2 mod 7.

4.3 Lots of Practice Problems with Congruences

(The Starred Problems will appear on the next Homework to be Handed-In)

1. Show that the following congruences hold:

13 ≡ 1 mod 2, 111 ≡ −9 mod 40, 69 ≡ 62 mod 7.

2. Show that if a is an odd integer then a2 ≡ 1 mod 8. (Try to find two proofs, one using
modular arithmetic and one that doesn’t)

3. Find the least positive residue of 1! + 2! + 3! + · · · 100! mod 7

4. Show by mathematical induction that if n is a positive integer then 4n ≡ 1+3n mod 9.

5. Find the least positive residue mod 47 of 2200.

6. ? Show that for every integer n there are infinitely many Fibonacci numbers fk such
that m divides fk. (Hint: Show that the sequence of least positive residues mod n of
the fibonacci numbers is a repeating sequence.)

7. ? If a, b, c,m are integers such that m > 0, d = (c,m) and ac ≡ bc mod m then
a = b mod m/d.
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Main Points from Lecture 4:

• How to solve systems of linear diophantine equations using the Euclidean Algorithm

• Basic properties of congruences

5 The Extended Euclidean Algorithm and Linear Mod-

ular Congruences (5.10.2015)

5.1 The Extended Euclidean Algorithm

So far we have only used the Euclidean Algorithm in the classical way: Given a and b, use the
algorithm to find their gcd. We can then back-substitute to find a solution to the equation
ax + by = gcd(a, b). We now present a way that does this all at once called the Extended
Euclidean Algorithm.

The basic idea is simple: Given a > b > 1 our goal is to not only find z = gcd(a, b) but
also an integer solution (x, y) ∈ Z2 the equation ax+ by = z. This is done by extending the
steps in the Euclidean Algorithm from the sequence of reminders in successive divisions

r0 > r1 > · · · > rk = gcd(a, b) > rk+1 = 0

to a sequence of integer vectors v−2, v−1, . . . , vk ∈ Z3

v−2 = (x−2, y−2, r−2) = (1, 0, a) ,

v−1 = (x−1, y−1, r−1) = (0, 1, b) ,

v0 = (x0, y0, r0) ,

...

vk = (xk, yk, rk) ∈ Z3

such that
axn + byn = rn for n = −2,−1, 0, 1, . . . , k .

Then (x, y) = (xk, yk) ∈ Z2 is such that

ax+ by = rk = z = gcd(a, b)

as required.

Proposition 5.1. (Extended Euclidean Algorithm) Given a, b ∈ N and z = gcd(a, b), there
exist integers (x, y) ∈ Z2 such that:

ax+ by = z Bézout’s Identity .
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Proof. As usual, it may be assumed that a > b > 1. For any vectors v = (x, y, r), v′ =
(x′, y′, r′) ∈ Z3 such that

ax+ by = r and ax′ + by′ = r′ ∈ Z

(i.e. on the integer plane ax + by − z = 0 in Z3 ⊂ R3 normal to (a, b,−1) ∈ Z3) and any
integers c, c′ ∈ Z the integer linear combination

v′′ = cv + c′v′ = (cx+ c′x′, cy + c′y′, cr + c′r′) = (x′′, y′′, r′′) ∈ Z3

is also on the integer plane, with

ax′′ + by′′ = a(cx+ c′x′) + b(cy + c′y′)

= c(ax+ by) + c′(ax′ + by′)

= cr + c′r′ = r′′ ∈ Z .

This is called the Principle of Linear Superposition. The formula for constructing the
sequence of vectors v0, . . . , vk ∈ Z3 involves the integer linear combinations used to obtain
rn+1 from rn and rn−1. By construction, the rn’s are the successive remainders in the divisions

an = qnbn + rn (n = 0, 1, . . . , k + 1)

with the sequence (an, bn) ∈ N2 of pairs such that an > bn > 0 given by the Euclidean
Algorithm

(a0, b0) = (a, b) , r0 = a0 − q0b0
(a1, b1) = (b0, r0) , r1 = a1 − q1b1

...
...

(ak+1, bk+1) = (bk, rk) , rk+1 = 0 (terminate)

such that
an = qnbn + rn for n = 0, 1, . . . , k, k + 1

with z = gcd(a, b) = rk. The remainder rn+1 is obtained from rn and rn−1 by a particular
linear integer combination

rn+1 = an+1 − qn+1bn+1 = rn−1 − qn+1rn .

Use the same linear integer combination to define

vn+1 = vn−1 − qn+1vn ∈ Z3

which coordinate-wise is

xn+1 = xn−1 − qn+1xn , yn+1 = yn−1 − qn+1yn , rn+1 = rn−1 − qn+1rn ∈ Z .
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You do not have to memorize these formulae in order to implement the Extended Euclidean
Algorithm, assuming that you can implement the Euclidean Algorithm itself. You only need
to know the initial values

v−2 = (1, 0, a) , v−1 = (0, 1, b) ∈ Z3

and the idea that the integer linear combinations of the Euclidean Algorithm in the third
coordinate govern the iteration of v0, v1, v2, . . . , vk ∈ Z3 in the Extended Euclidean Algo-
rithm.

We illustrate with an example: gcd(91, 77).
Notice that the following equations hold obviously.

E(−2) : 91(1) + 77(0) = 91, v−2 = (1, 0, 91)

E(−1) : 91(0) + 77(1) = 77, v−1 = (0, 1, 77)

We have written the coefficients to the right. Now notice what happens when we subtract
the second equation from the first E(0) = E(−2)− E(−1).

E(0) : 91(1)− 77(1) = 14, v0 = v−2 − v−1 = (1,−1, 14)

Now we can set E(1) = E(−1)− 5 · E(0):

E(1) : 91(−5) + 77(6) = 7, v1 = (−5, 6, 7)

As 14 = 2.7 we are done:

−5.91 + 6.77 = gcd(91, 77) = 7 .

If you look at the numbers on the right side of the equation, they are simply the remainders
that come up in the Euclidean Algorithm. Hence 7 is the last nonzero remainder so it is the
gcd. Hence we have found 91(−5) + 77(6) = 7. This algorithm can be done rapidly if we
ignore writing the equations and just work with the vectors.

Example 5.2. Compute gcd(561, 306) using the Extended Euclidean Algorithm: We begin
with the vectors v−2 = (1, 0, 561) and v−1 = (0, 1, 306) and just subtract one from the other
successively:

v−2 = (1, 0, 561)

v−1 = (0, 1, 306)

v0 = (1,−1, 255), (v0 = v−2 − v−1)
v1 = (−1, 2, 51), (v1 = v−1 − v0)
v2 = (6,−11, 0), (v2 = v0 − 5v1).

Thus the gcd is 51 and 561(−1) + 2(306) = 51.
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5.2 Linear modular congruences

We now solve congruences of the form

ax ≡ c mod n.

Recall that from the definition this means that ax − c = ny for some integer y. Rewriting
we can think of this as a linear diophantine equation

ax− ny = c.

(Notice the roles of the letters is slightly different here than it was before.) Hence for a
solution to exist, if d = (a, n), it must be the case that d | c. Further, if one solution (x0, y0)
exists then there are infinitely many solutions, given by Theorem 4.1:

x = x0 + (n/d)t, y = y0 + (a/d)t.

Since we are solving a congruence, however, it makes sense to talk about the congruence
classes which are solutions. In other words, we want to know how many incongruent solutions
there are to the equation mod n.

Theorem 5.3. If d = (a, n) divides c then the congruence ax ≡ c mod n has exactly d
incongruent solutions mod n.

Proof. Let x0 be a solution to the congruence. By the discussion above, we know that all
solutions are of the form x0 + (n/d)t where t ∈ Z. We now see how many of these are
incongruent mod n. Suppose that we have

x1 = x0 + (n/d)t1, x2 = x0 + (n/d)t2.

Then x1−x2 = (n/d)(t1−t2). Hence x1 and x2 are congruent mod n if and only if (n/d)(t1−t2)
is a multiple of n. This occurs exactly when there exists an integer ` such that (n/d)(t1−t2) =
`n. Simplifying we see (t1 − t2) = `d, which is equivalent to

t1 ≡ t2 mod d.

Summing up, the solutions x that are inequivalent mod n are exactly the ones that have
corresponding values of t that are inequivalent mod d. There are d such classes for t, which
proves the theorem.

Note the special case when d = (a, n) = 1.

Corollary 5.4. If (a, n) = 1 then the congruence ax = c mod n has a unique solution.

An Algorithm: To solve a congruence of the form ax ≡ c mod n we can proceed
algorithmically:

First we check the necessary condition that d = (a, n) divides c.
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If so, then we expect there to be d distinct solutions mod n. To find one of these, write

d = ax0 + ny0

Then going mod n, we see that x0 is a solution to the congruence.
The set of all solutions is then

{x0, x0 + (n/d), x0 + 2(n/d), . . . , x0 + (d− 1)(n/d)} = {x0 + t(n/d) | 0 6 t 6 d− 1} .

Example 5.5. To find all solutions to 9x ≡ 12 mod 15, we first check that d = (9, 15) = 3
indeed divides 12. By the Theorem there will be 3 inequivalent solutions. By the Euclidean
Algorithm, we see that

d = 15(−1) + (2)(9).

Hence 9(2) ≡ 3 mod 15 and thus 9(8) ≡ 12 mod 15. Thus x = 8 is a solution. All solutions
will therefore be of the form 8+(15/3)t = 8+5t for t = 0, 1, 2. Hence the congruence classes
of the solutions are 3, 8, 13.

Main Points from Lecture 5:

• Using the Extended Euclidean Algorithm to write gcd(a, b) as an integer combination
of a and b.

• The number of solutions to the congruence ax ≡ c mod n is d = (a, n).

• All solutions are of the form x0 + t(n/d) for t = 0, 1, . . . , d− 1.

6 Modular Inverses and the Chinese Remainder The-

orem (8.10.2015)

A solution x0 mod n to the congruence ax0 ≡ 1 mod n is called an inverse of a mod n,
written

x0 ≡ a−1 mod n .

By Corollary 5.4, this solution is unique. Inverses are incredibly useful, because if you have
one, then it allows you to easily solve all other congruences, by ‘reverse engineering’: the
equation ax ≡ b mod n is solved by x ≡ a−1b mod n, that is x ≡ x0b mod n. But beware:
this only works if a−1 mod n is actually defined, i.e. if gcd(a, n) = 1.

Example 6.1. Find all solutions to 7x ≡ 1 mod 31. We use the Extended Euclidean Algo-
rithm to determine that

(31)(−2) + 7(9) = 1

so that 9 = 7−1 mod 31, and x ≡ 9 mod 31.
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An important special case is when n = p is a prime number. In this case, every nonzero
number a has a unique inverse. For example, we list the inverses mod 11 in the following
table

a 1 10 2 3 5 7
a−1 1 10 6 4 9 8

Notice in this table we have chosen the representatives {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} to represent
the nonzero congruence classes mod p. However, if we chose {−1,−2,−3,−4,−5, 1, 2, 3, 4, 5},
the table would be:

a 1 −1 2 3 5 −4
a−1 1 −1 −5 4 −2 −3

Theorem 6.2. A number a is equal to its own inverse mod p if and only if a ≡ ±1 mod p.

Proof. Since 12 = (−1)2 = 1, we see that ±1 are their own inverses. To see that there are no
others, notice that a2 ≡ 1 mod p means that a2−1 is a multiple of p. But then p must divide
(a+ 1)(a− 1) meaning that p must divide either a+ 1 or a− 1. Hence a ≡ ±1 mod p.

Theorem 6.3. [Chinese Remainder Theorem] Given m1, . . . ,mk ∈ N with gcd(mi,mj) =
1 (i 6= j) (“pairwise coprime”), and a1, . . . , ak ∈ Z, then the system of congruences

x ≡ a1 mod m1

x ≡ a2 mod m2

...

x ≡ ak mod mk

has a solution x ∈ Z.

Proof. In fact x can be constructed explicitly. For i = 1, . . . , k define m∗i to be the inverse
modmi of m1 . . .mi−1mi+1 . . .mk, so that

m1 . . .mi−1m
∗
imi+1 . . .mk ≡ 1 mod mi.

Then x =
∑k

i=1 aim1 . . .mi−1m
∗
imi+1 . . .mk ≡ ai mod mi for i = 1, . . . , k, because every

term except the ith is divisible by mi.

Remark 6.4. Notice that if n ∈ N with n =
∏k

i=1 p
ei
i where pi are distinct primes. Then

x ≡ a mod n is the unique solution to the system of congruences

x ≡ a mod peii , i = 1, . . . , k.

Indeed, (x− a) is divisible by n if and only if it is divisible by peii for all i.

Then, if x0 is one solution to this set of congruences, it’s easy to see (how?) that the
general solution is x = x0+`m1 · · ·mk for any integer `. In particular, there is always a choice
of ` giving a unique solution x in the range 0 6 x < m1 · · ·mk of the set of congruences.
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6.1 Examples and Exercises

Example 6.5. This example comes from the ancient Chinese puzzle (third century C.E.) in
Master Sun’s Mathematical Manual. Find a number that leaves a remainder 1 when
divided by 3, a remainder of 2 when divided by 5 and a remainder of 3 when divided by 7.

This system of equations is

x ≡ 1 mod 3

x ≡ 2 mod 5

x ≡ 3 mod 7.

We have k = 3 equations, so following the solution in the theorem, we form all products of
k − 1 = 2 moduli and compute inverses.

(m1) ≡ (5 · 7)−1 mod 3

(m2) ≡ (3 · 7)−1 mod 5

(m3) ≡ (3 · 5)−1 mod 7

We can check that these numbers are (m′1,m
′
2,m

′
3) = (2, 1, 1). Hence

x = (1) · 2 · 5 · 7 + (2) · 3 · 1 · 7 + (3) · 3 · 5 · 1 = 70 + 42 + 45 = 157.

Is a solution. Furthermore, since 2 · 5 · 7 = 105 all solutions are of the form 157 + 105n. In
particular, the smallest positive solution is x = 52.

There is also an iterative way to find a solution

Example 6.6.

x ≡ 1 mod 5

x ≡ 2 mod 6

x ≡ 3 mod 7.

The first equation says x = 5t+ 1, and hence the second says 5t+ 1 ≡ 2 mod 6. This is the
same as

5t ≡ 1 mod 6

we can multiply both sides by 5 (the inverse of 5) to obtain

t ≡ 5 mod 6 .

Hence t = 6s+ 5, so that x = 30s+ 26. Finally we substitute in to obtain

30s+ 26 ≡ 3 mod 7

2s ≡ 5 mod 7

s ≡ 6 mod 7.

Thus s = 6, and x = 30(6) + 26 = 206.
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This second method allows an algorithm for solving systems of congruences even in the
case when the mi are not relatively prime (when a solution exists. See Exercises 15-20 in
Rosen 4.3) For this course it is important to know the statement and proof of the Chinese
Remainder Theorem. For solving practical problems, either method is acceptable.

Remark 6.7. Notice that we can in fact solve any system of congruences of the form ax =
b mod m using the methods above, provided that a has an inverse mod m. The first step is
just to multiply both sides of the congruence by a−1.

6.2 Exercises

1. Find all the solutions of

•

x ≡ 4 mod 11

x ≡ 3 mod 17

•

x ≡ 0 mod 2

x ≡ 0 mod 3

x ≡ 1 mod 5

x ≡ 6 mod 7.

2. Show that if (a, b) = 1 and c is an integer, then there exists an integer n such that
(an+ b, c) = 1.

3. Solve the system:

x ≡ 4 mod 6

x ≡ 13 mod 15

Note that the moduli are NOT relatively prime.

Main Points from Lecture 6:

• The inverse of a exists mod n if and only if (a, n) = 1.

• If ax+ ny = 1 then x is the inverse of a mod n.

• Method and proof of the Chinese Remainder Theorem
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7 Solving Polynomial Equations and Hensel’s Lemma

(12.10.2015)

Let’s begin with a one sentence summary of what the Chinese Remainder Theorem says
from last time:

Knowing a number x mod N is equivalent to knowing x mod each of the prime powers p
ej
j

in N = pe11 p
e2
2 . . . pekk .

For example, knowing that x ≡ 27 mod 30 is the same as knowing

x ≡ 1 mod 2, x ≡ 0 mod 3, x ≡ 2 mod 5.

Example 7.1. How many solutions x mod pq does the equation x2 ≡ 1 mod pq have, where
p and q are distinct odd primes?

Solution: By the CRT we know that this is equivalent to finding solutions of the form
x2 ≡ 1 mod p and x2 ≡ 1 mod q. These each have exactly two solutions: +1,−1. (We are
excluding the case p = 2 because in this case 1 = −1). Hence in total there are four possible
systems of congruences, so in total there are 4 solutions.

For example the square roots of 1 mod 77 are equal to {1, 34, 43, 76}
More generally, we can show that if N = p1 · · · pk is a product of distinct odd primes then

x2 ≡ 1 mod N has 2k distinct solutions mod N . We say that 1 has 2k square roots.

This motivates a question: If we know x mod p, what can we say about x mod p2?

Example 7.2. Solve the polynomial congruence 2x3 + 7x− 4 ≡ 0 mod 200.
Solution: Notice that 200 = 23 ·52 = 8 ·25 This problem is equivalent to solving the system

of equations
2x3 + 7x− 4 ≡ 0 mod 8

2x3 + 7x− 4 ≡ 0 mod 25.

We can check that x ≡ 4 mod 8 (just by trial and error) and later today we’ll show that
x ≡ 16 mod 25. These two linear equations combine by the CRT to show that the solution is
x ≡ 116 mod 200.

The CRT provides a very effective way of chopping up a problem into smaller pieces
by turning the problem “Solve f(x) ≡ 0 mod n” into a system of problems “Solve f(x) ≡
0 mod peii ” if n =

∏
peii . In this section we will develop a method for solving polynomial

equations of the form f(x) = 0 mod pe.
Continuing the example, notice that to solve the equation 2x3 + 7x − 4 mod 5 we only

need to test 0, 1, 2, 3, 4. This is reasonably quick. And we see that all solutions satisfy
x ≡ 1 mod 5. However, we’d like to avoid check all the numbers 0, . . . , 24 to solve this
equation mod 25. Notice that any solution x to

2x3 + 7x− 4 ≡ 0 mod 25
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is also a solution mod 5. Hence x ≡ 1 mod 5. Hence x = 5t+ 1. Substituting we see that

2(5t+ 1)3 + 7(5t+ 1)− 4 ≡ 0 mod 25

2(���(5t)3 + �����3 · (5t)2 + 3 · 5t+ 1) + 35t+ 7− 4 ≡ 0 mod 25.

2(3 · 5t+ 1) + 35t+ 7− 4 ≡ 0 mod 25.

65t+ 5 ≡ 0 mod 25.

15t+ 5 ≡ 0 mod 25.

(Notice that everything on the left was divisible by 5). We can eliminate a factor of 5 by
Exercise 4.3.7. Hence

3t+ 1 ≡ 0 mod 5.

which has t ≡ 3 mod 5 is its unique solution. Hence x ≡ 16 mod 25 is the unique solution
to our original equation. We say that x ≡ 16 mod 25 is a “lift” of the solution x ≡ 5 mod 5.

Hensel’s Lemma is a number theory version of Newton’s calculus method of approxi-
mating a solution of a differential equation f(x) = 0 by using Taylor’s theorem. If x0 is
an approximate solution with f ′(x0) 6= 0 then the graph y = f(x) can be replaced near
(x0, f(x0)) by the tangent line

y = f(x0) + (x− x0)f ′(x0) .

The tangent line intersects the x-axis y = 0 at

x1 = x0 −
f(x0)

f ′(x0)

which with luck is either a solution or at least a better approximate solution, meaning that
either f(x1) = 0 or |f(x1)| < |f(x0)| with f ′(x1) 6= 0. Now proceed in this way, defining a
sequence of ever better (hopefully!) approximations

xn+1 = xn −
f(xn)

f ′(xn)
(n = 0, 1, 2 . . . ) (∗)

with the limit
x∞ = lim

n
xn

defined, and such that f(x∞) = 0. The number theory version is for a polynomial function

f(x) =

j∑
i=0

aix
i (ai ∈ Z)

in which one seeks integer solutions x ∈ Z of f(x) = 0 ∈ Z. The derivative is then again a
polynomial function with integer coefficients

f ′(x) =
n∑
i=1

iaix
i−1 .
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However, in number theory the passage from one approximation to another is rather more
complicated than (∗), and proceeds mod prime powers pk for each prime p separately, and
k = 1, 2, . . . . In the first instance, we only consider one prime p, and how to lift7 a solution
r mod pk−1 to a solution s mod pk, if possible.

Theorem 7.3. (Hensel’s Lemma) Suppose that f(x) is a polynomial with integer coefficients
and k is an integer with k > 2. Suppose further that r ∈ Z is a solution of the congruence
f(r) ≡ 0 mod pk−1. Then there are three possibilities for the number of solutions s mod pk

of f(s) ≡ 0 mod pk which are lifts of r mod pk−1. There are 1, p or 0 solutions, according
to:

1. if f ′(r) 6≡ 0 mod p there is a unique solution s mod pk of f(s) ≡ 0 mod pk lifting
r mod pk−1. There is a unique integer t (0 6 t 6 p− 1) such that

t ≡ −f ′(r)∗(f(r)/pk−1) mod p

where f ′(r)∗ is the inverse of f ′(r) mod p. The unique solution is the mod pk reduction
s = r + tpk−1 ∈ Z;

2. if f ′(r) ≡ 0 mod p and f(r) ≡ 0 mod pk, there are p solutions s mod pk of f(s) ≡
0 mod pk lifting r mod pk−1. The p solutions are the p lifts s = r + tpk−1 mod pk

(0 6 t 6 p− 1) of r mod pk−1;

3. if f ′(r) ≡ 0 mod p and f(r) 6≡ 0 mod pk, then there are no solutions, i.e. there is no
s ∈ Z such that f(s) ≡ 0 mod pk and s mod pk is a lift of r mod pk−1.

Example 7.4. 1. Let p = 2, f(x) = x + 1, so that r = 1 ∈ Z is a solution of f(r) ≡
0 mod 2, with f(r) = 2 ∈ Z, f ′(r) = 1 6≡ 0 mod 2. Then t = 1 is the unique integer
with 0 6 t < 2 such that

t ≡ −f ′(1)∗(f(1)/2) mod 2

and s = 1 + 2 = 3 mod 4 is the unique solution of f(s) ≡ 0 mod 4 lifting 1 mod 2.

2. Let p = 2, f(x) = x2 − 1, so that r = 1 ∈ Z is a solution of f(r) ≡ 0 mod 2,
with f(r) = 0 ∈ Z, f(r) ≡ 0 mod 4, f ′(r) ≡ 0 mod 2. Then for any integer t ∈ Z
s = 2t + 1 ∈ Z is such that f(s) ≡ 0 mod 4 and s mod 4 is a lift of 1 mod 2. There
are two solutions s mod 4 of f(s) ≡ 0 mod 4 lifting r ≡ 1 mod 2, namely s ≡ 1 mod 4
and s ≡ 3 mod 4.

3. Let p = 2, f(x) = x2 + 1, so that r = 1 ∈ Z is a solution of f(r) ≡ 0 mod 2, with
f(r) = 2 ∈ Z, f(r) 6≡ 0 mod 4, f ′(r) ≡ 0 mod 2. There is no solution s ∈ Z of
f(s) ≡ 0 mod 4, let alone one which lifts 1 mod 2.

The Wikipedia article on Hensel’s Lemma is recommended as background reading.

7By definition, s mod pk is a lift of r mod pk−1 if r is the reduction of s. Every r mod pk−1 has p lifts
s = s0 + tpk−1 mod pk (0 6 t 6 p− 1), with s0 mod pk any one lift.
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7.1 A fireside Chat With Hensel’s Lemma

It’s fair to say that the statement of Hensel’s Lemma is a bit intimidating - but that doesn’t
mean that the concept is difficult. Hopefully the following chat between Hensel’s Lemma
and some guy named Earle will help with the concept.

Earle: So what’s the deal with you, anyway?

HL: Well, I provide a method of telling how many solutions you have mod p2 given so-
lutions mod p.

Earle: Is that it?

HL: Well, I can inductively be used to find solutions mod p3, p4, and on and on. In an
advanced course, you might wonder if there’s a limit term at p∞, and the answer is YES,
and that concerns the p-adics and ...

Earle: Whoa, let’s worry about that in the advanced course. So tell me, in layman’s
terms what your lemma does.

HL: Well suppose you’ve got a polynomial, and all you know is the following table of
numbers

x 0 1 2 3 4
f(x) 10 1 6 −7 25

Then what are the solutions to f(x) ≡ 0 mod 5?

Earle: Well you just have to check the equivalence classes, so it looks like x ≡ 0 and
x ≡ 4 are the only solutions.

HL: Good. Now what can you say about the solutions to f(x) ≡ 0 mod 25?

Earle: Well I don’t know. I mean I know that x has to be 0 or 4 mod 5. So that means x
has to be either 0, 5, 10, 15, 20 or 4, 9, 14, 19, 24.

HL: Do you know anything else?

Earle: Well from the given information I guess I know that f(4) = 25 so f(4) ≡ 0 mod 25.
So that’s one solution. And I know that f(0) = 10 so 0 is NOT a solution mod 25.

HL: Good. That’s really all you can say. But now what if I told you that f ′(0) = 2?

Earle: Oh, then the theorem says that f(x) ≡ 0 mod 25 should have a unique solution... or
something, right? But I don’t remember the formula, there’s a t and a r + tpk−1 blech.
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HL: Mostly right. It says that there is a unique solution with x congruent to 0 mod 5.
So only one of the numbers 0, 5, 10, 15, 20 is going to be a solution. And check out Corollary
8.3 for a more convenient way to work. This wasn’t written on the board during class, but
it’s very helpful. It says that a solution mod 25 will just be given by

r2 = r − f ′(r)∗f(r)

In other words, take the root from the previous step and then subtract off a correction term.

Earle: This is like Newton’s method, isn’t it?

HL: It is indeed! So
r2 = 0− ((2)∗)(10)

Earle: Wait a second, when you take the inverse of 2, is that mod 5 or mod 25?

HL: Well it turns out that it won’t matter, but in the statement of the lemma, this in-
verse business is ALWAYS just mod p. So yea, you just want the inverse mod 5.

Earle: Ok, so r2 = 0− (3)(10) = −30 which is −5 mod 25 which is 20 mod 25. Pretty cool.
I don’t even have to check those other candidates among 0, 5, 10, 15, 20. I know that 20 has
got to be the solution.

HL: Ok, now what if I told you that f ′(4) = 0.

Earle: Oh that’d be a sad day.

HL: Not so much. My Theorem says that if f ′(4) is zero - then either ALL of the lifts
of 4 are solutions, or NONE of the lifts are solutions.

Earle: Oh, so I could just check one to see whether or not it was a solution.

HL: Yea, and you may as well just check 4 itself.

Earle: Ok f(4) = 25 ≡ 0 mod 25 so that means we have one solution, so they must all
be solutions! So all of 4, 9, 14, 19, 24 are solutions.

HL: Yep. And summing up, that means that 20 and 4, 9, 14, 19, 24 are the solutions mod
25.

Earle: That was pretty easy. Can we do another step?
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HL: Sure. To lift that 0 mod 5 solution we can just do another round of that formula:

r3 = r2 − f ′(r)∗(f(r2))

where r was the original solution mod 5.

Earle: Wait wait, this is the part that really confuses me. First of all didn’t you mean
to put an r2 into that f ′(r)∗ term?

HL: Well I could have, but it won’t make a difference. Remember, r2 and r are the same
mod 5. So that means that f ′(r) and f ′(r2) are the same mod 5. And since we take our
inverses mod 5, this is all that matters.

Earle: Oh ok. Ohhh so that inverse term... it’s gonna be 3 again, cause at every step
I’m just applying f ′(0)∗? So

r3 = 20− 3f(20)

HL: Looks good to me.
This concludes our fireside chat with Hensel’s Lemma. I hope this has been helpful.

Main Points from Lecture 7:

• How to apply the Chinese Remainder Theorem to solving equations mod N via fac-
torization.

• The statement and application of Hensel’s Lemma.

8 The Proof of Hensel’s Lemma and Example (15.10.2015)

To prove Hensel’s Lemma we will need the following Integrality Lemma on the Taylor series
of a polynomial with integer coefficients. Notice that this Taylor series is finite since the
derivatives of a polynomial are eventually all zero. Indeed, if f(x) is a polynomial of degree
n then the (n+ 1)-st derivative f (n+1)(x) is always zero. Furthermore, the converse is true:
if a differentiable function f : R → R is such that f (n+1)(x) = 0 for all x ∈ R then f is a
degree n polynomial with real coefficients. This being a course on number theory we are
only concerned with functions f : Z→ Z, and polynomials with integer coefficients.

Lemma 8.1. (Integrality Lemma) If f(x) is a polynomial of degree n with integer coefficients
then

f(a+ b) = f(a) + f ′(a)b+
f ′′(a)

2!
b2 + · · ·+ f (n)(a)

n!
bn
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where the coefficients f(a), f ′(a),
f ′′(a)

2!
, . . . ,

f (n)(a)

n!
are polynomials in a with integer coeffi-

cients.

Proof. All but the integrality of the coefficients follows from the Taylor expansion about the
point x = a. To see that the coefficients are integers consider first the special case of a degree
m ‘monomial’ f(x) = xm, when

f (k)(a)

k!
=


m(m− 1) . . . (m− k + 1)

k!
xm−k =

(
m

k

)
xm−k if 0 6 k 6 m

0 if k > m .

For the general case of a degree n polynomial

f(x) =
n∑

m=0

cmx
m (cm ∈ Z)

we have
f (k)(a)

k!
=

n∑
m=0

cm

(
m

k

)
xm−k (with xm−k = 0 if k > m) .

Example 8.2. For a cubic polynomial with integer coefficients

f(x) = c0 + c1x+ c2x
2 + c3x

3 (c0, c1, c2, c3 ∈ Z)

and any a, b ∈ Z

f(a+ b) = c0 + c1(a+ b) + c2(a+ b)2 + c3(a+ b)3

= (c0 + c1a+ c2a
2 + c3a

3) + (c1 + 2c2a+ 3c3a
2)b+ (c2 + 3c3a)b2 + c3b

3

= f(a) + f ′(a)b+
f ′′(a)

2!
b2 +

f ′′′(a)

3!
b3

with
f(a) = c0 + c1a+ c2a

2 + c3a
3 , f ′(a) = c1 + 2c2a+ 3c3a

2 ,

f ′′(a)

2!
= c2 + 3c3a ,

f ′′′(a)

3!
= c3

polynomials in a with integer coefficients.

Proof of Hensel’s Lemma. Recall that we are assuming that r is a solution of f(r) ≡ 0 mod
pk−1. We seek solutions mod pk that are congruent to r mod pk−1. In other words, we are
looking for solutions mod pk of the form s = r + tpk−1. We will seek precise conditions for
t. Notice that the Integrality Lemma 8.1 says

f(r + tpk−1) = f(r) + f ′(r)tpk−1 +
f ′′(r)

2!
t2p2k−2 + · · ·
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with integer coefficients
f (k)(r)

k!
. Notice that all terms but the first two are zero mod pk

(since k > 2). Hence
f(r + tpk−1) ≡ f(r) + f ′(r)tpk−1 mod pk.

Since we are assuming r + tpk−1 is a solution mod pk the left hand side is zero and we can
conclude that

f ′(r)tpk−1 ≡ −f(r) mod pk.

But we are assuming that f(r) ≡ 0 mod pk−1 so dividing the equation

f ′(r)tpk−1 = − f(r) + npk ∈ Z (for some n ∈ Z)

by pk−1 we see that
f ′(r)t ≡ −f(r)/pk−1 mod p .

Now we just examine cases. If f ′(r) is nonzero mod p then this equation must have a unique
solution for t

t ≡ −f ′(r)∗f(r)/pk−1 mod p

where the ∗ denotes inverse mod p. This establishes part 1. of Hensel’s Lemma.
So suppose that f ′(r) ≡ 0 mod p. Then the equation is of the form

0t ≡ −f(r)/pk−1 mod p.

If the right hand side is nonzero, this has no solutions. If the right hand side is zero, then
any value of t gives a solution, proving 2. And if the right hand side is non-zero, then no
value of t gives a solution, proving 3.

One Corollary of Hensel’s Lemma provides a particularly easy method for computing
“lifts” of solutions mod p.

Corollary 8.3. Suppose that r is a solution to f(r) ≡ 0 mod p where p is prime. If f ′(r) 6=
0 mod p then there is a unique solution rk mod pk for each k = 2, 3, . . . such that

rk = rk−1 − f(rk−1)f
′(r)∗.

where f ′(r)∗ is the inverse of f ′(r) mod p.

Proof. We see from the hypotheses of Hensel’s lemma that we are in Case 1. Hence r lifts
to a unique solution r2 mod p2 with r2 = r + tp with t = −f ′(r)∗(f(r)/p) mod p. Hence

r2 = r − f ′(r)∗(f(r)) mod p2 .

It follows from f(r) ≡ 0 mod p that r2 ≡ r mod p, and hence that

f ′(r2) ≡ f ′(r) 6= 0 mod p .

Using Hensel’s Lemma again, we see that the unique solution mod p3 is then

r3 ≡ r2 − f(r2)f
′(r)∗ mod p3 .

Continuing this way we see that we can obtain solutions mod pk for all k.
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Example 8.4. Find the solutions of

x3 + x2 + 29 ≡ 0 mod 25.

Solution: Let f(x) = x3 + x2 + 29. Then the solutions mod 5 are x ≡ 3 mod 5. Since
f ′(x) = 3x2 + 2x, we have f ′(3) ≡ 3 6= 0 mod p. Also f(3) = 15 Hence the unique solution
mod 25 is

r2 ≡ 3− 15(3)−1 ≡ 3− 15(2) ≡ −27 ≡ 23

is the unique solution mod 25.

I have posted in the “Background material” directory of LEARN a scan of Section 4.4
of Rosen’s Elementary Number Theory and Its Applications which has a few more
examples worked out in detail.

8.1 Exercises

1. Find all solutions to x2 + 4x+ 2 = 0 mod 73.

2. Find all solutions to x2 + x+ 34 = 0 mod 81.

3. How many incongruent solutions are there to x5 + x− 6 ≡ 0 mod 144?

Main Points from Lecture 8:

• The method and proof of Hensel’s Lemma.

9 The finite field Fp (19.10.2015)

For the next two weeks we will be studying in detail the integers mod p, where p is prime.
The set of congruence classes mod p forms a field, which we now review:

9.1 Fields

A field F is a set supplied with two binary operations ‘+’ and ‘×’ (i.e., maps from F × F
to F ), and containing special elements 0 and 1 such that

• F is an abelian group under + (meaning that a+ b = b+ a ∈ F for all a, b ∈ F ), with
0 as its identity element, and −a as the (additive) inverse of a ∈ F ;

• F× = F \ {0} is an abelian group under ×, with 1 as the identity element, and a−1

the (multiplicative) inverse of a ∈ F×;
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• The Distributive Law holds: for all a, b, c ∈ F we have

a× (b+ c) = a× b+ a× c.

This describes how + and × interact in F .

As a consequence of these rules, we can show (won’t prove)

Proposition 9.1. For a, b ∈ F we have

• a× 0 = 0;

• a× (−b) = −(a× b);

• Cancellation Law: if a× b = 0 then a = 0 or b = 0 (or both).

Examples of fields are: the complex numbers C, the real numbers R, the rational numbers
Q, and the finite fields Fp for p prime – see below.

9.1.1 Construction of Fp

Start with the integers Z and a prime p, and define an equivalence relation on Z by saying
that two integers a and b are equivalent if a ≡ b mod p. This defines an equivalence relation
on Z. The elements of Fp are the equivalence classes under this relation. Taking equiva-
lence class representatives to be 0, 1, 2, 3, . . . , p − 1, we can effectively regard Fp as the set
{0, 1, 2, 3, . . . , p− 1}. Addition, negation, multiplication and reciprocals are performed mod
p, so that the result can always be chosen to be in {0, 1, 2, 3, . . . , p− 1}.

For example, in F7, 3 + 4 = 0 as in Z we have 3 + 4 = 7 ≡ 0 mod 7. Hence also −3 = 4
and −4 = 3 in F7. Further, because 3× 5 = 15 ≡ 1 mod 7, we have 3−1 = 5 and 5−1 = 3 in
F7.

9.2 Solving equations in Fp

For any field F let F [x] be the set of polynomials f(x) =
m∑
i=0

aix
i in x with coefficients ai ∈ F ,

for variable m > 0. The set F [x] has both addition and multiplication

+ : F [x]× F [x]→ F [x] ; (f(x), g(x)) = (
m∑
i=0

aix
i,

n∑
j=0

ajx
j)

7→ f(x) + g(x) = (f + g)(x) =
max(m,n)∑
k=0

(ak + bk)x
k ,

. : F [x]× F [x]→ F [x] ; (f(x), g(x)) = (
m∑
i=0

aix
i,

n∑
j=0

ajx
j)

7→ f(x)g(x) = (fg)(x) =
m∑
i=0

n∑
j=0

aibjx
i+j .
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but not division. (F [x] is a ‘ring’ which is not a field). The degree of a polynomial

f(x) =
m∑
i=0

aix
i is

degree(f(x)) = the largest i 6 m such that ai 6= 0 ∈ F .

Note that
degree(f(x) + g(x)) 6 max(degree(f(x)), degree(g(x))) ,

degree(f(x)g(x)) = degree(f(x)) + degree(g(x)) .

We now restrict our congruences to a prime modulus p, and consider the solutions of
equations f(x) = 0 for f(x) ∈ Fp[x] and x ∈ Fp. This is equivalent, for f(x) ∈ Z[x], of
solving f(x) ≡ 0 mod p for x ∈ {0, 1, 2, . . . , p− 1}.

Theorem 9.2. A nonzero polynomial f ∈ Fp[x] of degree n has at most n roots x in Fp.

Proof. Use induction: for n = 1, f(x) = ax + b say, with a 6= 0, whence f(x) = 0 has a
solution x = −a−1b in Fp.

Now assume n > 1 and that the result holds for n. Take f(x) ∈ Fp[x] of degree n+ 1. If
f = 0 has no roots x ∈ Fp the result is certainly true. Otherwise, suppose f(b) = 0 for some
b ∈ Fp. Now divide x−b into f(x), (i.e., one step of the Euclidean algorithm for polynomials)
to get f(x) = (x− b)f1(x) + r say, where f1 is of degree n, and r ∈ Fp. Putting x = b shows
that r = 0. Hence f(x) = (x− b)f1(x), where f1 has, by the induction hypothesis, at most
n roots x ∈ Fp. So f has at most n + 1 roots x ∈ Fp, namely b and those of f1 = 0. Hence
the result is true for n+ 1 and so, by induction, true for all n > 1.

Note that the proof, and hence the result, holds equally well when Fp is replaced by any
field F .

Question. Where in the above proof was the fact that we were working over a field
used? There were two places. Once in the base case when n = 1 and then once again when
we concluded that if (x− b)f1(x) = 0 then either one of the factors must equal zero.

Remark 9.3. Note that this theorem is not true if we work mod a composite number. For
instance, the polynomial x2 − 1 has 4 roots mod 15. It’s instructive to really think the above
proof through using this polynomial to see where it breaks down. Notice also that

x2 − 1 = (x− 1)(x+ 1) = (x− 4)(x+ 4)

has two different factorizations!

9.3 Some Special Congruences - Wilson’s Theorem and Fermat’s
Theorem

We now prove some special congruences that will be useful for the rest of the course.

Theorem 9.4 (Wilson’s Theorem). If p is prime then (p− 1)! ≡ −1 mod p.
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Proof. Recall that by Theorem 6.2 the only numbers that are their own inverse mod p are 1
and p− 1. Hence if we rearrange the terms

(p− 1)! = 1 · 2 · · · (p− 1) = 1 · (p− 1) · (2 · 2−1) · · · (a · a−1)

where on the right we have paired each number a with its inverse. It’s clear that this product
is equal to (p− 1) · (1 · · · 1) ≡ −1 mod p.

Theorem 9.5. [Fermat’s Little Theorem] If p is a prime then for all integers a, ap ≡
a mod p. If further, a 6≡ 0 mod p then ap−1 ≡ 1 mod p.

Proof. Notice that the second statement follows from the first by multiplying both sides by
a−1 (which exists if and only if a 6≡ 0 mod p.) To prove the first statement we argue by
induction. Clearly the statement if true if a = 0. Now notice that by the binomial theorem

(a+ 1)p = ap +

(
p

1

)
ap−1 +

(
p

2

)
ap−2 + · · ·+

(
p

p− 1

)
a+ 1.

Recall that
(
p
k

)
is divisible by p for 1 6 k 6 p− 1 (Why?). Hence

(a+ 1)p ≡ ap + 1 mod p.

Now by induction we have
(a+ 1)p ≡ a+ 1.

This proves the result for all positive integers, and since this is a statement about congru-
ences, this takes care of all the equivalence classes (including the class of negative ones).

In class, we used Fermat’s Theorem to provide another proof of Wilson’s Theorem. See
if you can fill in the details! The rough outline is that Fermat’s Theorem says that each
nonzero element of Fp is a solution to the equation xp−1 − 1 = 0. Now use the fact that
you’ve found p− 1 roots of this equation, and a little factorization to finish the job!

Main Points from Lecture 9:

• Definition and basic properties of a field

• Definition of Fp

• The number of roots in Fp of a polynomial of degree n is at most n

• Statement and two proofs of Wilson’s Theorem

• Statement (and your favorite proof) of Fermat’s Little Theorem
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10 Primitive Roots and the Structure of Fp (22.10.2015)

10.1 A Warmup for Things to Come:

We start today with defining theEuler ϕ-function: this is is the number of positive integers
not exceeding n that are coprime to n

ϕ(n) = the number of a such that 1 6 a 6 n and greatest common divisor (a, n) = 1 .

Example 10.1. The values of ϕ(n) of the numbers n with 1 6 n 6 12.

n 1 2 3 4 5 6 7 8 9 10 11 12
ϕ(n) 1 1 2 2 4 2 6 4 6 4 10 4

We will study this function in more detail next week, but for today we note one beautiful
property of ϕ:

Theorem 10.2. If n ∈ N then ∑
d|n

ϕ(d) = n.

Proof. This proof is pretty intuitive. We want to show that a sum of a bunch of numbers is
equal to n. A good way to show something like this is to establish a bijection between the
numbers {1, . . . , n} and the things you are trying to count. For us, we are going to do the
following: To each integer 1 6 a 6 n, compute (a, n). This is certainly some number d that
divides n. Now the following equation is obvious:∑

d|n

#{a | (a, n) = d} = n

Indeed, every number from 1 to n appears in exactly one of the sets. On the other hand,
it’s easy to see that

#{a | (a, n) = d} = ϕ(n/d)

since if (a, n) = d then (a/d, n/d) = 1. (Conversely, if (b, n/d) = 1 then (bd, n) = d.)
Therefore:

n =
∑
d|n

ϕ(n/d).

Now whether we sum ϕ(d) or ϕ(n/d) we should get the same thing.

This is one of those proofs for which working through it with an example in mind is very
helpful.
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Example 10.3. In this table for each divisor d|12 the second row groups together all the
numbers 1 6 a 6 12 with greatest common divisor d:

d 1 2 3 4 6 12
a 1, 5, 7, 11 2, 10 3, 9 4, 8 6 12

12/d 12 6 4 3 2 1
ϕ(12/d) 4 2 2 2 1 1

Each a = 1, 2, . . . , 12 appears exactly once in the second row, verifying that∑
d|12

#{a | (a, 12) = d} = 12 .

The numbers in the fourth row are the number of elements in the corresponding entry of the
second row, verifying that

#{a | (a, 12) = d} = #{a/d | (a/d, 12/d) = 1} = ϕ(12/d) ,

and hence that ∑
d|12

ϕ(12/d) = 12 .

10.2 Fp and its groups under + and ×
We are now going to explore the structure of the field Fp, using the rudiments of group
theory. Only cyclic groups are actually required.

Recall:

Definition 10.4. A group G is a set with a product operation

G×G→ G ; (g, h) 7→ gh

and an identity element 1 ∈ G such that

• the product is associative (gh)i = g(hi) ∈ G for all g, h, i ∈ G,

• g1 = 1g = g ∈ G for each g ∈ G,

• for each g ∈ G there exists an inverse g−1 ∈ G such that gg−1 = g−1g = 1 ∈ G.

Definition 10.5. A group G is abelian if gh = gh ∈ G for all g, h ∈ G.

In fact, we shall only need to consider abelian groups in this course.

Definition 10.6. Let G be a group. We say that an element g ∈ G generates G if the set
of powers of g and g−1 is equal to all of G. If such a g exists, we say that G is cyclic and
we write G = 〈g〉.
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Note that a cyclic group G is necessarily abelian, since for any m,n ∈ Z

gmgn = gm+n = gngm ∈ G .

Definition 10.7. If g ∈ G, we say that the order of g is the smallest positive integer n such
that gn = 1, or infinity if gn 6= 1 for all n > 1.

Example 10.8. (i) The integers Z with respect to addition are an infinite cyclic group, with
identity 0 ∈ Z. The generator 1 ∈ Z has infinite order.
(ii) For any n > 1 the integers mod n with respect to addition are a finite cyclic group Zn,
with identity 0 ∈ Zn. The generator 1 ∈ Zn has order n.

There is a close connection between the order of a group element and the greatest common
divisor in number theory:

Proposition 10.9. For any group G, if g ∈ G has order n than gk ∈ G has order n/(n, k)

Proof. The first value of j = 1, 2, 3, . . . such that (gk)j = 1 ∈ G is also the first value of j
such that n | kj, and this is j = n/(n, k).

A finite group G is cyclic if and only if there is an element g ∈ G with order equal to the
number of elements in G.

Notice that by definition, in a field F there are two groups: the additive group (F,+),
with 0 as the identity element, and the multiplicative group (F×,×), with F× = F\{0} and
1 as the identity element.

For the finite field Fp the additive group (Fp,+) is fairly simple to describe. It is a
cyclic group of order p, with every non-zero element a generator. The multiplicative group
(F×p ,×) is also cyclic (as proved in the next section), but of order p− 1, and only some non-
identity elements are generators. Note the essential difference between the orders of
elements in the additive and multiplicative groups. In the workshop you will work
out several examples to determine the number of elements of each possible order in (Fp,+)
and (F×p ,×). Here are some examples.

Some orders of elements in (F7,+) and (F×7 ,×)

n 0 1 2 3 4 5 6
order under + 1 7 7 7 7 7 7

,
n 1 2 3 4 5 6

order under × 1 3 6 3 6 2

Some orders of elements in (F11,+) and (F×11,×)

n 0 1 2 3 4 5 6 7 8 9 10
order under + 1 11 11 11 11 11 11 11 11 11 11

n 1 2 3 4 5 6 7 8 9 10
order under × 1 10 5 5 5 10 10 10 5 2
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Some orders of elements in (F13,+) and (F×13,×)

n 0 1 2 3 4 5 6 7 8 9 10 11 12
order under + 1 13 13 13 13 13 13 13 13 13 13 13 13

n 1 2 3 4 5 6 7 8 9 10 11 12
order under × 1 12 3 6 4 12 12 4 3 6 12 2

Hopefully the pattern in the table for the operation + is clear. As an exercise, prove that
if p is prime, then the order (under plus) of an element 1 6 a 6 p − 1 is precisely equal to
p. However, under × the situation is clearly a bit more subtle. In these examples, it’s true
that there is an element of order p− 1 in each case.

10.3 F×p is cyclic!

As before, we denote the group of nonzero elements of Fp by F×p . We now state the rather
surprising fact:

Theorem 10.10. F×p is a finite cyclic group of order p− 1.

Definition 10.11. We call an element x ∈ F×p a primitive root if x is a generator for F×p .
In other words, if x, x2, x3, . . . , xp−1 are all distinct numbers mod p. We may also say that
x is a primitive root mod p.

It is easy to see that an element x is primitive if and only if its order is equal to p− 1.
For example, if p = 7 then we could try a few numbers:

〈1〉 = {1, 12, 13, . . . , } = {1}

〈2〉 = {2, 22, 23} = {1, 2, 4}
〈3〉 = {3, 32, 33, 34, 35, 36} = {1, 2, 3, 4, 5, 6}

So 3 is a generator for the multiplicative group F×p when p = 7. However, the numbers 1
and 2 failed to generate everything.

As the example above indicates, 3 is a primitive root mod 7. As another example, if
p = 23 then 5 is the smallest positive integer which is a primitive root. As we’ll see, the
theory of these roots can be quite mysterious. The following lemma will be useful:

Lemma 10.12. Let G be a group and g ∈ G. If for integers m,n, we have gm = 1 and
gn = 1 then ggcd(m,n) = 1.

Proof. Note that since g−1 exists, it makes sense to talk about both positive at negative
powers of g. Thus since gcd(m,n) can be written as mx+ ny = gcd(m,n), we see that

agcd(m,n) = (am)x · (an)y = 1.
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Lemma 10.13. Let G be a finite group, of cardinality N . For every g ∈ G the order of g
divides N .

Proof. gN = 1 by an application of the Lagrange theorem that the cardinality of a subgroup
of G (in this case the cyclic subgroup generated by g) divides the cardinality of G. Let
m denote the order of g, so that gm = 1. Suppose that m does not divide N . Then
gcd(m,N) < m. But then by Lemma 10.12 ggcd(m,N) = 1. This is a contradiction since we
assumed that m was the smallest positive integer k such that gk = 1.

Let N(d) denote the number of elements of order d in F×p . Since |F×p | = ϕ(p) = p− 1, by
Lemma 10.13 N(d) = 0 unless d | p− 1. Let’s go back to the table above with p = 13. For
each d | p− 1 = 12 we see that we have

N(12) = 4, N(6) = 2, N(4) = 2, N(3) = 2, N(2) = 1, N(1) = 1 .

These values are exactly the same as the values of the Euler ϕ function!

Theorem 10.14. For any prime p and d ∈ N

N(d) =

{
ϕ(d) if d | p− 1

0 otherwise.

Proof. We assume d | p− 1, and proceed in two steps. First we will show that N(d) 6 ϕ(d).
Let’s do it! If N(d) = 0 there is nothing to prove, since ϕ(d) > 0. If N(d) > 0 there is

some element a ∈ F×p of order d. In other words, the elements

{a, a2, a3, . . . , ad = 1}

are all distinct in F×p . The equation xd = 1 ∈ F×p thus has exactly d roots, namely
a, a2, . . . , ad. (Recall from Theorem 9.2 that a degree d polynomial can have at most d
roots). By Proposition 10.9 ak has order d/(k, d), so that ak has order d if and only if
(k, d) = 1.

Thus we have shown that the elements of order d in F×p are precisely those elements ak

with (k, d) = 1. In other words, there are ϕ(d) of them. (Remark: We have shown that if
N(d) > 0 then N(d) = ϕ(d). This is nice, but unfortunately doesn’t help with the proof
since we use different means from here onwards).

We are now ready for the second step. Showing that N(d) = ϕ(d). We will use the fact
that N(d) 6 ϕ(d). Notice that every element in F×p has some order. And there are p − 1
elements. And the order of elements must divide p− 1. Thus

p− 1 =
∑
d|p−1

N(d)

And by Step 1, we have

p− 1 6
∑
d|p−1

ϕ(d)

But now by Theorem 10.2, we know that the right hand side is p−1. But this must mean that
the inequality 6 is actually an equality. So this means that N(d) = ϕ(d) for all d | p−1.
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Proof of Theorem 10.10. Since p is prime N(p − 1) = ϕ(p − 1) > 0, so that there exists a
primitive root x ∈ F×p , i.e. an element of order p − 1. Thus F×p is cyclic, with generator
x.

The special case d = p−1 of Theorem 10.14 gives that F×p has exactly N(p−1) = ϕ(p−1)
primitive roots. Here are some examples:

• F7 has ϕ(6) = 2 primitive roots, namely 3,5.

• F11 has ϕ(10) = 4 primitive roots, namely 2,6,7,8.

• F13 has ϕ(12) = 4 primitive roots, namely 2,6,7,11

10.4 Taking nth roots in F×p
Take an odd prime p and g a fixed primitive root modp. Then for any B ∈ F×p we define the
index (old-fashioned word) or discrete logarithm (current jargon) of B, written indB or
logpB, as the integer b ∈ {0, 1, . . . , p− 2} such that B = gb in Fp. Clearly the function logp
depends not only on p but also on the choice of the primitive root g.

Proposition 10.15. Given n ∈ N and B ∈ F×p , the equation Xn = B in F×p has a solution
X ∈ F×p iff gcd(n, p− 1) | logpB.

When gcd(n, p− 1) | logpB then the number of distinct solutions X of Xn = B in F×p is
gcd(n, p− 1).

Proof. Write B = gb, X = gx, so that gnx = gb, giving nx ≡ b mod p− 1. Hence the number
of solutions is gcd(n, p− 1).

For large primes p, the problem of finding the discrete logarithm logpB of B appears to
be an intractable problem, called the Discrete Logarithm Problem. Many techniques in
Cryptography depend on this hypothesis. See e.g.,

http://en.wikipedia.org/wiki/Discrete logarithm

Main Points from Lecture 10:

• Definition and properties of ϕ(n)

• The multiplicative group of Fp is cyclic.

• Definition of primitive roots

11 Multiplicative Functions (26.10.2015)

Euler’s ϕ function is very useful, as we have seen. A large part of the reason why is because
it is a multiplicative function. Before going on for a more detailed study of primitive roots,
we study multiplicative functions in general.
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11.1 Arithmetic functions - more about ϕ

Arithmetic functions are functions f : N→ N or Z or maybe C, usually having some arith-
metic significance. An important subclass of such functions are the multiplicative functions:
such an f is multiplicative if

f(nn′) = f(n)f(n′)

for all n, n′ ∈ N with n and n′ coprime (gcd(n, n′) = 1). By convention, f(1) = 1.

Proposition 11.1. If f is multiplicative and n1, . . . , nk are pairwise coprime (gcd(ni, nj) = 1
for all i 6= j) then

f(n1n2 . . . nk) = f(n1)f(n2) . . . f(nk).

This is readily proved by induction.

Corollary 11.2. If n factorises into distinct prime powers as n = pe11 . . . pekk then

f(n) = f(pe11 ) . . . f(pekk ).

So multiplicative functions are completely determined by their values on prime powers.
Some examples of multiplicative functions are

• The identity function: f(n) = n;

• The constant function f(n) = 1;

• The ‘1-detecting’ function ∆(n), equal to 1 at n = 1 and 0 elsewhere – obviously
multiplicative;

• τ(n) =
∑

d|n 1, the number of divisors of n;

• σ(n) =
∑

d|n d, the sum of the divisors of n.

Proposition 11.3. The functions τ(n) and σ(n) are both multiplicative.

Example 11.4. Let’s check that σ(36) = σ(9 · 4) = σ(9)σ(4). The divisors of 36 are

1, 2, 3, 4, 6, 9, 12, 18, 36

their sum is 91. On the other hand the divisors of 9 and 4 are respectively

1, 3, 9, and 1, 2, 4

Hence σ(9) = 13 and σ(4) = 7. Luckily 13 · 7 = 91.
A curious thing happened on the way to this result. Notice that 36 had nine divisors and

that 9 and 4 each had three apiece. If we were gamblers, we might wager that this is no
coincidence. We might wager that any divisor of 36 is a product of a divisor of 9 and a
divisor of 4, and that this could be done in a unique way. Stop here and think through why
this should be true.
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Lemma 11.5. If a and b are relatively prime then any factor of ab can be written as a
product of a factor of a times a factor of b in a unique way. Hence the number of divisors
of ab is equal to the number of divisors of a times the number of divisors of b. In terms of
the function τ we have proven that τ(n) is a multiplicative function.

Notice that the Lemma is not true is if a and b fail to be relatively prime. For instance
if a = 4, b = 12 then the factor d = 4 of 48 can be written in many ways as a product of
factors of a and b: 4 = 4 · 1 = 2 · 2 = 1 · 4. The point is that if a and b are relatively prime,
there’s only one way to do this!

The proof of this lemma is pretty straightforward and is left as an exercise - think about
the prime factors that divide a and b and those that divide ab.

To show that σ is multiplicative, we will prove a stronger result that puts σ and τ in a
broader context. This is the operation “hat”.

Definition 11.6. Given an arithmetic function f , define its ‘sum over divisors’ function

f̂(n) =
∑
d|n

f(d) .

This is sometimes also called the summatory function of f .

Notice that if f is a function, then f̂ is another function, and one that depends on f .
For example f̂(12) = f(1) + f(2) + f(3) + f(4) + f(6) + f(12), which clearly depends on

f .
For instance if f(n) = n then

f̂(n) =
∑
d|n

f(d) =
∑
d|n

d = the sum of all divisors of n = σ(n).

We could write this as f̂ = σ. Or since f(n) = n, we could write n̂ = σ. During class,

someone asked why we didn’t write d̂ = σ. This is a good question, and one to think about.
The answer is just that the functions f(d) = d and the function f(n) = n are the same
function. In some circles they have even a third name - the identity function. It’s good to
be able to keep these things straight.

For further practice, check that 1̂ = τ . Remember, the function f(n) = 1 is NOT the
identity function, it’s the constant function that sends everything to 1.

The following proposition shows the important fact that if f is a multiplicative function,
then so is f̂ .

Proposition 11.7. Let F (n) = f̂(n). If f is multiplicative, then F is also multiplicative.

Proof. The relationship between F and f is that F (n) adds up the values of f(d) on all
divisors d of n. Now suppose that n = ab with a and b coprime. We want to show that
F (ab) = F (a)F (b), given that f(ab) = f(a)f(b). Notice:

F (ab) =
∑
d|ab

f(d)
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F (a)F (b) = (
∑
d|a

f(d))(
∑
e|b

f(e)) (3)

We want to show these two are equal. But by the Lemma, we know that every divisor d of
ab can be written uniquely as a product of divisors of a and b. Hence

F (ab) =
∑
d|a
e|b

f(de) =
∑
d|a
e|b

f(d)f(e) (4)

where the last equality holds since f is multiplicative. Now it is clear that this is equal to
F (a)F (b) because each term of the right hand side of (4) is equal to a term of (3) and vice
versa.

Hence we have shown that f̂ is multiplicative whenever f is. Thus we know that σ and τ
are multiplicative since they are the hats of the (obviously) multiplicative functions f(n) = n
and f(n) = 1.

Remark 11.8. It’s fun sometimes to see what properties multiplicative functions have to have
by default. For instance, notice that from the definition we see that f(1) = f(1·1) = f(1)f(1).
So (f(1))2 = f(1). This only has two possible solutions in Z so f(1) is either 1 or 0. If
f(1) = 0 then we can prove that f(n) = f(n ·1) = f(n)f(1) = 0 for all n. So in other words,
we have shown that if f is not the zero function, then f(1) = 1.

To close our tour of multiplicative functions, let’s study our friend ϕ, defined by

ϕ(n) = the number of a such that 1 6 a 6 n and greatest common divisor (a, n) = 1 .

As a warmup, let’s compute!

Proposition 11.9. If p is prime and k is a positive integer then ϕ(pk) = pk−pk−1 = pk(1−1
p
).

In particular ϕ(p) = p− 1.

Proof. There are pk numbers between 1 and pk. Of these, the ones that are relatively prime
to pk are the ones who are NOT divisible by p. There are pk−1 multiples of p in this range,
hence

ϕ(pk) = #{1, 2, . . . , pk} −#{p, 2p, 3p, . . . , pk} = pk − pk−1 .

Theorem 11.10. Euler’s ϕ function is multiplicative.

Notice that this theorem shows that if n = pe11 · · · penn then ϕ(n) = ϕ(pe11 ) · · ·ϕ(pekn ). Each
factor is easy to compute by the Proposition above. In fact, since ϕ(pe) = pe(1− 1

p
) we see

that

ϕ(n) = pe11

(
1− 1

p1

)
· · · pekk

(
1− 1

pk

)
= n

∏
p|n

(
1− 1

p

)
which proves:
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Corollary 11.11. If n is an integer, then

ϕ(n) = n
∏
p|n

(
1− 1

p

)
.

Remark 11.12. Notice that this is a quite a nice formula, but in practice it’s probably easiest
to just remember the formula ϕ(pk) = pk − pk−1 and use this to compute ϕ.

Example 11.13.

ϕ(300) = ϕ(3)ϕ(4)ϕ(25) = (3− 1)(4− 2)(25− 5) = 2 · 2 · 20.

Proof of Theorem. Take n and n′ coprime, and let

{i : 1 6 i 6 n, gcd(i, n) = 1} = {a1 < a2 < · · · < aϕ(n)},

the reduced residue classes modn. Similarly, let

{j : 1 6 j 6 n′, gcd(j, n′) = 1} = {a′1 < a′2 < · · · < a′ϕ(n′)}.

The idea is now that numbers that are relatively prime to nn′ are gotten by combining pairs
of (ai, a

′
j) using the Chinese Remainder Theorem in a unique way. Hence the number of

relatively prime integers to nn′ is equal to the product of ϕ(n)ϕ(n′).
If x ∈ {1, 2, . . . , nn′} and gcd(x, nn′) = 1 then certainly gcd(x, n) = gcd(x, n′) = 1, so

that
x ≡ ai mod n x ≡ a′j mod n′ (5)

for some pair ai, a
′
j. Conversely, given such a pair ai, a

′
j we can solve (5) using the CRT to

get a solution x ∈ {1, 2, . . . , nn′} with gcd(x, nn′) = 1. Thus we have a bijection between
such x and such pairs ai, a

′
j. Hence

#{such x} = ϕ(nn′) = #{ai, a′j} = ϕ(n)ϕ(n′).

12 The multiplicative group of units mod n, Euler’s The-

orem and more about Primitive Roots (29.10.2015)

We begin with a definition:

Definition 12.1. A number 1 6 a 6 n which has an inverse x modulo n

ax ≡ 1(mod n)

is called a unit modulo n.

50



Proposition 12.2. (i) a is a unit mod n if and only if a, n are coprime.
(ii) The set of units mod n forms a finite abelian group, the group of units mod n Z/nZ×
under multiplication mod n.8 The group Z/nZ× is of order ϕ(n).

Proof. (i) a is coprime to n if and only if there exist x, y ∈ Z such that

ax+ ny = 1 ∈ Z .

Then x mod n is the inverse of a mod n.
(ii) We have to show that the operation of multiplication is well-defined on the set of units.
I.e. that the product of two units is a unit.9 This follows since the inverse of ab is the product
of the inverses of a and b. By the definition of the Euler ϕ-function, there are precisely ϕ(n)
residues a(mod n) coprime to n. We also should show that every element has an inverse (by
definition), that 1 is in this set (obvious) and that the multiplication is associative (again
obvious). In short there wasn’t much to see in this proof. Better ask for our money back.

For some integers n the group Z/nZ× is cyclic, while for other n the group it is not cyclic
(although always a product of cyclic groups).

Here is the definition of a primitive root (10.11) again.

Definition 12.3. We say that a is a primitive root modulo n if (a, n) = 1 and the
following ϕ(n) numbers

{a, a2, a3, . . . , aϕ(n)}

are distinct modulo n, i.e. if Z/nZ× is cyclic, with generator a. In other words, a has
(maximal) order equal to ϕ(n). In this case we say that n has a primitive root.

Like so much else in number theory, primitive roots were first studied by Gauss, in the
early 19th century. The Wikipedia article on primitive roots
https://en.wikipedia.org/wiki/Primitive root modulo n
and the multiplicative group of units
https://en.wikipedia.org/wiki/Multiplicative group of integers modulo n
are very informative!

Example 12.4. (i) For a prime p the group of units Z/pZ× = F×p = {1, 2, . . . , p − 1} is a
cyclic group of order ϕ(p) = p− 1 by Theorem 10.10, with ϕ(p− 1) generators (= primitive
roots).
(ii) Consider Z/4Z = {0, 1, 2, 3}, the integers modulo 4. The units are the numbers relatively
prime to 4, which are

Z/4Z× = {1, 3}
8There are many notations for this group. Some people write Z/nZ×. Others use U(Zn) or U(Z/nZ).

What’s important is to remember that this group is not all of the numbers from 1 to n, but only those
numbers that are coprime to n.

9Some of you might call this “showing that the set is closed under multiplication”
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This is a cyclic group of order two, and the element 3 indeed has order ϕ(4) = 2, so 3 is a
primitive root for 4.
(iii) Consider Z/8Z = {0, 1, 2, 3, 4, 5, 6, 7}, the integers modulo 8, with units

Z/8Z× = {1, 3, 5, 7}

a group of order ϕ(8) = 4. However, the 3 non-identity elements 3, 5, 7 all have order 2,
forming the Klein 4-group V , the non-cyclic finite group of order 4:
https://en.wikipedia.org/wiki/Klein four-group.
Thus there are no primitive roots for 8. But you can hear the Klein group sing:
https://www.youtube.com/watch?v=BipvGD-LCjU.

Given an integer n > 1 and a residue a(mod n) it is easy to check if a is a unit mod n:
just apply the Euclidean algorithm to calculate the greatest common divisor (a, n) and see if
it is 1. (For a prime power n = pk there is an even easier procedure: just check if the reduction
a(mod p) is non-zero.) It is also easy to check if n has primitive roots - see Theorem 12.8
below. But there is no general formula for deciding which units a ∈ Z/nZ× are primitive
roots of n: you just have to calculate the order of a ∈ Z/nZ×, i.e. work out the first integer
m = 1, 2, . . . such that am ≡ 1(mod n), and see if it is m = ϕ(n). Of course, some ways
of doing this are more efficient than others. For low values of n there is nothing for it but
to work out a, a2, . . . , am ≡ 1 mod n and see if m = ϕ(n) - even in the prime power case
n = pk.

Here is a table of results for n 6 12:

n ϕ(n) Z/nZ× primitive roots
2 1 {1} {1}
3 2 {1, 2} {2}
4 2 {1, 3} {3}
5 4 {1, 2, 3, 4} {2, 3}
6 2 {1, 5} {5}
7 6 {1, 2, 3, 4, 5, 6} {3, 5}
8 4 {1, 3, 5, 7} NONE
9 6 {1, 2, 4, 5, 7, 8} {2, 5}
10 4 {1, 3, 7, 9} {3, 7}
11 10 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} {2, 6, 7, 8}
12 4 {1, 5, 7, 11} NONE

Theorem 12.5. If n = m1m2 . . .mk is an expression of n as a product of powers of distinct
primes mi = peii (1 6 i 6 k) then the group of units mod n is the product

Z/nZ× = Z/m1Z× × Z/m2Z× × · · · × Z/mkZ× .

Proof. As in the proof of the Chinese Remainder Theorem 6.3 we have that (mi,mj) = 1
for i 6= j, and define m∗i to be the inverse modmi of m1 . . .mi−1mi+1 . . .mk, so that

m1 . . .mi−1m
∗
imi+1 . . .mk ≡ 1 mod mi.
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Then a ∈ Z/nZ is a unit mod n if and only if each a ∈ Z/miZ is a unit mod mi, and the
function

Z/nZ× → Z/m1Z× × Z/m2Z× × · · · × Z/mkZ× ;

a mod n 7→ (a mod m1, a mod m2, . . . , a mod mk)

is an isomorphism of groups (= bijection which preserves the group multiplication) with
inverse

Z/m1Z× × Z/m2Z× × · · · × Z/mkZ× → Z/nZ× ;

(a1, a2, . . . , ak) 7→
k∑
i=1

aim1m2 . . .mi−1m
∗
imi+1 . . .mk .

Recalling that if you have a finite group G of order |G| then every element g in the group
satisfies g|G| = e where e is the identity, we obtain

Theorem 12.6 (Euler’s Theorem). If n is a positive integer then aϕ(n) ≡ 1 mod n for every
a with (a, n) = 1.

Proof. If (a, n) = 1 then a is a unit modulo n. Hence it is in the group G of units modulo
n. But this means that it satisfies a|G| = 1 in this group. Since |G| = ϕ(n) we are done.

Remark 12.7. Euler’s Theorem is a generalization of Fermat’s Little Theorem, since ϕ(p) =
p− 1.

An Application: We can use Euler’s Theorem to find inverses: Indeed, we know that
a·aϕ(n)−1 = 1 mod n so that aϕ(n)−1 is the inverse of a modulo n. For instance if ax ≡ b mod n
has a solution that it must be

x = aϕ(n)−1b mod n.

You might wonder: Modulo p there was always a primitive root - i.e. an element of order
p − 1 (the biggest possible order). Must there always be an element of order ϕ(n) modulo
n? The answer to this question is NO, but in some cases the answer is YES.

The following theorem states exactly which integers n have primitive roots.

Theorem 12.8. A positive integer n has a primitive root if and only if n is one of the
following numbers

2, 4, pk, 2 · pk

where p is an odd prime and k is a positive integer.

Proof. Section 9.3 of Rosen, posted on LEARN.

We have seen already that 4 has a primitive root, and have also shown that p has a
primitive root for all p. What remains is to show that that in the remaining cases pk (k > 1)
and 2pk there is indeed a primitive root, and that also all other numbers lack a primitive
root. The statement of this theorem is important to know, though. As is the following:
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Theorem 12.9. If n has a primitive root then it has ϕ(ϕ(n)) primitive roots.

Proof. The double ϕ is NOT a typo, and although this looks a bit intimidating, the proof is
actually really calming. Indeed, it’s just three baby steps:

First, the group of units modulo n is a group G with |G| = ϕ(n).
Second, if n has a primitive root, then this means that G is cyclic.
Third, if G is a cyclic group of order m then G has ϕ(m) many generators. (Proved in

Lemma 12.10 below).
The result now follows.

Lemma 12.10. If G is a cyclic group of order m then G has ϕ(m) many generators.

We won’t present the proof in class, but because it was on the homework, I’m including
a different solution here:

Proof. This was essentially one of your homework problems, but here’s the idea. If G is
cyclic, then that means that G = 〈g〉 is generated by some element g. Hence every element
of the group is a power of g:

G = {g, g2, . . . , gm}
Now we just have to figure out how many elements have order m. Well gk has order m if
and only if m is the smallest positive integer such that (gk)m = 1. (The word “smallest” is
the important word here, we already know that (gk)m = 1, since EVERY element in a group
satisfying xm = 1.)

Now suppose that n is the smallest power such that (gk)n = 1. Then (gk)n = gkn and
gkn = 1 if and only if kn ≡ 0 mod m. Hence we have that kn is a multiple of m, and n is
the smallest positive integer n with this property. Now if (k,m) = d then

(xk)m/d = (xm)k/d = (xm)an integer = 1

so certainly n < m/d. Hence if n = m then d = 1 and m and k are relatively prime.
Conversely, it’s easy to check that if k and m are relatively prime that kn is a multiple of m
if and only if n is a multiple of m.

This proof had a lot of steps, and the technicalities obscure the fact that this result is
simple, nice, and really intuitive. If this proof doesn’t feel like a part of your repertoire, then
try a few examples:

(If G is cyclic of order 20, then G = {g, g2, . . . , g20}. Work out the order of the elements
g10, g2, g3, g5, g7 and look for patterns. Try to write your own proof of the above, etc.)

Main Points from Lecture 12:

• Definition and basic properties of the group Z/nZ× of units mod n

• Euler’s Theorem

• Primitive roots mod n
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13 Mersenne primes and perfect numbers (2.11.2015)

For any number p define the Mersenne number

Mp = 2p − 1 .

If Mp is prime then p is prime (this was Problem 6 on Homework 1), and Mp is called
a Mersenne prime. Note that there are primes p which are not Mersenne, e.g. p =
11. Mersenne primes are called after the 17th century French mathematician and theolo-
gian Marin Mersenne. The Wikipedia pages https://en.wikipedia.org/wiki/Marin Mersenne,
https://en.wikipedia.org/wiki/Mersenne prime are very informative!

A positive integer n is called perfect if it is the sum of its proper (i.e., excluding n itself)
divisors. There is a surprising connection between perfect even numbers and the Mersenne
primes Mp = 2p − 1. The Euclid-Euler theorem proved below gives the equivalence of the
following conditions for an even number n:

• n is perfect,

• n = Mp(Mp + 1)/2 for a Mersenne prime p,

• 8n+ 1 is a square and Mp = (
√

8n+ 1− 1)/2 is a Mersenne prime.

The first four Mersenne primes

M2 = 3 , M3 = 7 , M5 = 31 , M7 = 127

and the first four perfect numbers have been known since ancient times:

6 = M2(M2 + 1)/2 = 1 + 2 + 3 ,

28 = M3(M3 + 1)/2 = 1 + 2 + 4 + 7 + 14 ,

496 = M5(M5 + 1)/2 = 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248 ,

8128 = M7(M7 + 1)/2 = 1 + 2 + 4 + 8 + 16 + 32 + 64 + 127 + 254 + 508 + 1016 + 2032 + 4064 .

Recall the multiplicative function

σ(n) =
∑
d|n

d .

A number n is perfect if and only if σ(n) = 2n.

Theorem 13.1. (Euclid and Euler) An even number n is perfect if and only if it is of the
form n = 2p−1(2p − 1) = Mp(Mp + 1)/2 for some Mersenne prime Mp = 2p − 1.
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Proof. We first prove that if Mp is a Mersenne prime then n = 2p−1(2p − 1) (with 2p − 1 is
prime) is perfect. Since σ is multiplicative, we have that

σ(n) = σ(2p−1)σ(2p − 1)

with
σ(2p−1) = 1 + 2 + 2+ · · ·+ 2p−1 = 2p − 1 ,

σ(q) = q + 1 for q prime.

Thus
σ(n) = (2p − 1)(2p) = 2n .

This was Euclid’s bit.
Conversely, suppose that n is an even perfect number. Then we can write n = 2k ·t where

t is an odd number. Then perfection implies that

2k+1t = 2n = σ(n) = (2k+1 − 1)σ(t) (6)

This implies that 2k+1 divides σ(t) (since the other factor on the right is odd). Thus we can
write σ(t) = 2k+1s. Our goal is to show that k + 1 = p is prime and s = 1. Now canceling
we see that

t = (2k+1 − 1)s

If s > 1 then t clearly has 1, s, t as factors. Thus

σ(t) > 1 + t+ s = 1 + (2k+1s− s) + s = 1 + (2k+1s)

but this is a contradiction, because we assume that σ(t) = 2k+1s.
Hence s = 1 and we have that σ(t) = 2k+1, and Equation (6) says that

t = (2k+1 − 1).

This information about t and σ(t) implies that t must in fact be prime, as required : t = Mp

is a Mersenne prime. This was Euler’s bit.

Later, when we discuss primality testing we will see that there is a relatively efficient
algorithm to check whether a number of the form Mp = 2p− 1 is prime. (The Lucas-Lehmer
test) A good source of information on Mersenne numbers is
http://primes.utm.edu/mersenne/index.html

It is an unsolved problem as to whether there are any odd perfect numbers. See e.g.,
http://en.wikipedia.org/wiki/Perfect number for lots on this problem.

GIMPS, the Great Internet Mersenne Prime Search
https://en.wikipedia.org/wiki/Great Internet Mersenne Prime Search,
http://www.mersenne.org/primes/?press=M57885161
is a collective effort to hunt down Mersenne primes. Here is a listing of the 48 known (as of
September 2015) primes p such that Mp = 2p − 1 is a Mersenne prime
2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689,
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9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433,
1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951,
30402457, 32582657
https://oeis.org/A000043.
The largest known Mersenne prime is in fact the largest known prime

M32582657 = 232582657 − 1

with 9,808,358 digits. It is tantalizingly close to claiming the $100,000 award offered by
an anonymous donor for finding a 10 million digit prime number. Incidentally, the Online
Encyclopedia of Integer Sequences
https://oeis.org
is a marvellous compendium of integer sequences of all kinds!

Main Points from Lecture 13:

• Definition of Mersenne prime Mp

• Definition of perfect number

• The Euclid-Euler Theorem

14 The Möbius function µ(n), Möbius inversion and

the convolution f ∗ g (5.11.2015)

Recall from Chapter 11 that an arithmetic function f : N → N (or to Z or to C) is multi-
plicative if

f(mn) = f(m)f(n) for coprime integers m,n > 1

and f(1) = 1. Recall also the summatory function of f

f̂(n) =
∑
d|n

f(d) .

In Proposition 11.7 it was proved that if f(n) is multiplicative, then so is f̂(n). The classic

formula of Möbius Inversion recovers the function f(n) from the function f̂(n) (without
assuming multiplicativity) using the Möbius function µ(n). The main results of this Chapter

is that f(n) is multiplicative if and only if f̂(n) is multiplicative. (One way round was already

proved in Chapter 11). The relationship between f(n) and f̂(n) is seen to be a special case
of the convolution (f ∗ g)(n) of arithmetic functions f(n), g(n). The convolution will give a
systematic construction of multiplicative functions.
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14.1 The Möbius function µ(n)

Let’s start with a few examples - following the notation of Rosen, we will let F (n) = f̂(n).

F (1) = f(1)

F (2) = f(1) + f(2)

F (3) = f(1) + f(3)

F (4) = f(1) + f(2) + f(4)

F (5) = f(1) + f(5)

F (6) = f(1) + f(2) + f(3) + f(6)

If we solve these equations for f(n) in terms of F (n) we see

f(1) = F (1)

f(2) = F (2)− F (1)

f(3) = F (3)− F (1)

f(4) = F (4)− F (2)

f(5) = F (5)− F (1)

f(6) = F (6)− F (2)− F (3) + F (1).

Experimentally it seems that

f(n) =
∑
d|n

µn,dF (d)

where µn,d seems to be either 0, 1 or −1. We will prove that there exists a multiplicative
function µ(n) such that

f(n) =
∑
d|n

µ(n/d)F (d) .

This allows us to invert the process of passing to a summatory function f 7→ f̂ .

Definition 14.1. The Möbius function µ(n) is defined as

µ(n) =

{
0 if p2 | n for some prime p;

(−1)k if n = p1p2 . . . pk for distinct primes pi.

In particular, µ(1) = 1 and µ(p) = −1 for a prime p. It is immediate from the definition
that µ is multiplicative.

Proposition 14.2. The summatory function of µ is the 1-detecting function ∆(n)

µ̂(n) = ∆(n) =

{
1 if n = 1

0 if n 6= 1 .
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Proof. We need to check that
∑

k|n µ(k) = ∆(n). Recall that ∆(n) is one if n = 1 and zero

otherwise. Since µ is multiplicative, it suffices to compute
∑

k|n µ(k) when n = pe is a power
of a prime. If e > 0 then∑

k|pe
µ(k) = µ(1) + µ(p) + · · ·µ(pe) = 1− 1 = 0.

If e = 0 then of course µ̂(1) = µ(1) = 1. Hence µ̂(n) = 0 unless n = 1, and we are done.

Integers with µ(n) = ±1 are called squarefree.
The Möbius function arises in many kinds of inversion formulae. The fundamental one

is the following.

Proposition 14.3. (Möbius inversion) Let f(n) be an arithmetic function, and let

F (n) = f̂(n) =
∑
d|n

f(d) (n ∈ N) .

Then for all n ∈ N we can recover f(n) from F (n) by

f(n) =
∑
d|n

µ(n/d)F (d) .

Proof. We will simplify∑
d|n

µ(n/d)F (d) =
∑
d|n

µ(n/d)
∑
k|d

f(k) (n ∈ N)

by interchanging the order of summation to make
∑

k|n the outer sum. First note that we

can swap d and n/d in the sum:∑
d|n
µ(n/d)

∑
k|d
f(k) =

∑
e|n

(µ(e)
∑

k|(n/e)
f(k))

=
∑
e|n

(
∑

k|(n/e)
µ(e) · f(k)) .

Notice that the pairs of integers (e, k) such that e | n and k | n/e is the same as the set of
pairs is the same as those with k | n and e | (n/k). So∑

e|n
(
∑

k|(n/e)
µ(e) · f(k)) =

∑
k|n

(
∑

e|(n/k)
µ(e)f(k))

=
∑
k|n
f(k)

( ∑
e|(n/k)

µ(e)

)
.

The inner bracket is µ̂(n/k) which is nonzero if and only if n = k. In this case, µ̂(1) = 1.
Hence we have that the sum above reduces to∑

k|n

f(k)

 ∑
e|(n/k)

µ(e)

 = f(n) · 1 = f(n).
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14.2 Some Examples of Using Möbius Inversion

There are two main uses of Möbius Inversion. The first is that we can just apply the formula
to immediately obtain identities which might be difficult to obtain directly.

Example 14.4. By definition,

σ(n) = n̂ =
∑
d|n

d .

Möbius inversion gives that

n =
∑
d|n

µ(n/d)σ(d) .

Example 14.5. By definition

τ(n) = 1̂(n) =
∑
d|n

1 .

Möbius inversion gives that

1 =
∑
d|n

µ(n/d)τ(d) .

Proposition 14.6. (i) The summatory function of the Euler ϕ-function

ϕ(n) =
∑

16a6n,(a,n)=1

1

is
ϕ̂(n) =

∑
d|n

ϕ(d) = n .

(ii) Möbius inversion expresses ϕ(n) as

ϕ(n) =
∑
d|n

µ(n/d)d

Proof. (i) Every integer m with 1 6 m 6 n has a greatest common divisor (m,n). For each
divisor d | n there are exactly ϕ(n/d) integers m with 1 6 m 6 n and (m,n) = d, namely
a1d, a2d, . . . , aϕ(n/d)d with a1, a2, . . . , aϕ(n/d) the integers a with 1 6 a 6 n/d coprime to n/d.
The summatory function is

ϕ̂(n) =
∑
d|n
ϕ(d)

=
∑
d|n
ϕ(n/d) (since d | n if and only if n/d | n)

=
∑
d|n

∑
16a6n/d,(a,n/d)=1

1

= n .

(ii) Immediate from (i).
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Numerical example ϕ(12) = 4 because there are exactly 4 numbers 1 6 a 6 12 coprime
to 12, namely a = 1, 5, 7, 11. On the other hand, there are 6 divisors: 1,2,3,4,6,12, so

ϕ(12) =
∑
d|12

µ(12/d)d

= µ(12/1)1 + µ(12/2)2 + µ(12/3)3 + µ(12/4)4 + µ(12/6)6 + µ(12/12)12

= 0 + 2 + 0− 4− 6 + 12 = 4 .

The second main use of Möbius inversion is the following converse of Proposition 11.7:

Proposition 14.7. If an arithmetic function f(n) is such that F (n) = f̂(n) is multiplicative,
then f(n) is multiplicative.

Proof. Suppose that m1,m2 are coprime integers > 1. If d is a divisor of m1m2 then d = d1d2
where d1 | m1, d2 | m2 with d1, d2 coprime. Using the Möbius inversion formula and the fact
that µ and F are multiplicative we see that

f(m1m2) =
∑

d|m1m2

µ(d)F (m1m2/d)

=
∑

d1|m1,d2|m2

µ(d1d2)F (m1/d1)F (m2/d2)

=

( ∑
d1|m1

µ(d1)F (m1/d1)

)( ∑
d2|m2

µ(d2)F (m2/d2)

)
= f(m1)f(m2) .

Conclusion: f(n) if and only if f̂(n) is multiplicative.

Remark 14.8. This gives another proof that ϕ is multiplicative, say from the fact that ϕ̂ = n
(Proposition 14.6 (i)) is multiplicative.

14.3 Convolution

It is not accident that an arithmetic function f(n) is multiplicative if and only if the sum-

matory function f̂(n) is multiplicative!

Definition 14.9. The convolution of arithmetic functions f(n), g(n) is the arithmetic
function

(f ∗ g)(n) =
∑
d|n

f(d)g(n/d) .

(This is the number theory analogue of the convolution of continuous functions f(x),

g(x), defined by (f ∗ g)(x) =
∞∫
−∞

f(y)g(x − y)dy, which plays such an important role in

functional analysis, e.g. Fourier analysis.)
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Example 14.10. We have already had several examples of convolutions:
(i) By Example 14.4 σ = n ∗ 1, µ ∗ σ = n.
(ii) By Example 14.5 τ = 1 ∗ 1, µ ∗ τ = 1.
(iii) By Proposition 14.6 n = ϕ ∗ 1, µ ∗ n = ϕ.
Can you spot a common feature of (i), (ii) and (iii)? Yes, if g = f ∗ 1 then µ ∗ g = f , and

in fact g = f̂ .

Basic properties: the convolution is commutative and associative; for any arithmetic
functions f(n), g(n), h(n)

f ∗ g = g ∗ f , (f ∗ g) ∗ h = f ∗ (g ∗ h) .

(Why?) We have met the unit before:

Example 14.11. Convolution with the 1-detecting ∆-function ∆(n) =

{
1 if n = 1

0 if n 6= 1
does

not change anything:
f ∗∆ = f .

Proposition 14.12. If f(n) and g(n) are multiplicative functions then so is their convolution
(f ∗ g)(n).

Proof. As in the proof of Proposition 14.7 we have that for coprime integers m1,m2 > 1

(f ∗ g)(m1m2) =
∑

d1|m1,d2|m2

f(d1d2)g(m1m2/d1d2)

=

( ∑
d1|m1

f(d1)g(m1/d1)

)( ∑
d2|m2

f(d2)g(m2/d2)

)
= (f ∗ g)(m1)(f ∗ g)(m2) .

Remark 14.13. (i) The summatory function of an arithmetic function f(n) is the convo-
lution with the constant function 1(n) = 1

f̂ = f ∗ 1 .

Since 1 is multiplicative Proposition 14.12 recovers Proposition 11.7, that if f is multiplicative
then so is f̂ .
(ii) By Proposition 14.2 the convolution of the constant function 1 and the Möbius function
µ(n) is the 1-detecting function

1 ∗ µ = ∆ .

(iii) From (i) and (ii) and the associativity of the convolution we have a new proof of the
Möbius inversion Proposition 14.3, that we can recover any arithmetic function f(n) from

its summatory function f̂(n) as the convolution with the Möbius function µ(n)

f = f ∗∆ = f ∗ (1 ∗ µ) = (f ∗ 1) ∗ µ = f̂ ∗ µ .
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Since µ is multiplicative Proposition 14.12 recovers Proposition 14.7, that if f̂ is multiplica-
tive then so is f .

The Wikipedia pages
https://en.m.wikipedia.org/wiki/Multiplicative function
https://en.m.wikipedia.org/wiki/Möbius inversion formula
are useful introductions.

The book Number Theory in Science and Communication With Applications in Cryptog-
raphy, Physics, Digital Information, Computing, and Self-Similarity by Manfred Schröder is
a wonderful account of the applications of number theory to the real world!

Main Points from Lecture 14:

• Definition of Möbius function µ(n)

• Möbius inversion

• Convolution

15 Quadratic Residues (9.11.2015)

15.1 Quadratic residues and nonresidues

Given a quadratic equation with real (or rather complex) coefficients

x2 + ax+ b = 0

it is possible to “complete the square”

(x+ a/2)2 = a2/4− b

and solve by taking square roots of the discriminant

x+ a/2 = ±
√
a2/4− b .

What about quadratic equations modulo n, of the form

x2 + ax+ b ≡ 0(mod n)

for a, b(mod n)? If n = 2m− 1 is an odd integer, then 2m ≡ 1(mod n) and

(x+ am)2 = a2m2 − b mod n .

To proceed further need to know if the discriminant r = a2m2 − b is a square modn. If
n = 2m− 1 is an odd prime this can be decided as follows.

Let then p be an odd prime, and r ∈ F×p . If the equation x2 = r has a solution x ∈ F×p
then r is called a quadratic residue modp. If there is no such solution x, then r is called
a quadratic nonresidue modp.
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Proposition 15.1. Take p an odd prime, and g a primitive root modp. Then the quadratic
residues modp are the even powers of g, while the quadratic nonresidues modp are the odd
powers of g. (So there are p−1

2
of each.)

Proof. Suppose r ∈ F×p , with r = gk say. If k is even then r = (gk/2)2, so that r is a quadratic
residue modp. Conversely, if x = g`, x2 = r, then g2`−k = 1, so that 2`− k is a multiple of
p− 1, which is even. So k is even.

15.2 The Legendre symbol

Let p be an odd prime, and r ∈ F×p . Then the Legendre symbol is defined as(
r

p

)
=

{
1 if r is a quadratic residue mod p;

−1 if r is a quadratic nonresidue mod p.

Note that, on putting r = gk for a primitive root g we see that(
gk

p

)
= (−1)k =

{
1 if k is even;

−1 if k is odd.

Next, recall Fermat’s Theorem: that rp−1 = 1 for all r ∈ F×p . This is simply a consequence
of F×p being a group of size (order) p−1. (We know that g#G = 1 for each g in a finite group
G.)

Proposition 15.2 (Euler’s Criterion). For p an odd prime and r ∈ F×p we have in F×p that

(
r

p

)
= r

(p− 1)

2 ∈ {+1,−1} . (7)

Proof. If r = gk then for k even

r
p−1
2 = gk

p−1
2 = (gp−1)k/2 = 1k/2 = 1,

while if k is odd, k p−1
2

is not a multiple of p− 1, so r
p−1
2 6= 1. However, rp−1 = 1 by Fermat,

so r
p−1
2 = ±1 and hence r

p−1
2 = −1. So, by Proposition 15.1, we have (7), as required.

Theorem 15.3. In particular (r = −1), for p an odd prime, we have

(
−1

p

)
= (−1)

p− 1

2 =

{
1, if p ≡ 1 mod 4

−1, if p ≡ −1 mod 4.

Lemma 15.4. Let p be an odd prime, and a, b be integers not divisible by p. We have
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1. a ≡ b mod p implies that

(
a

p

)
=

(
b

p

)
;

2.

(
ab

p

)
=

(
a

p

)(
b

p

)
;

3.

(
a2

p

)
= 1,

(
a2b

p

)
=

(
b

p

)
.

Proof. Let g be a primitive root modp. Then

(
gk

p

)
= (−1)k, from which the results follow

easily.

Example 15.5. Determine whether or not 90 is a square mod 11.

Solution: We are asked to compute

(
90

11

)
By the Lemma above we see that

(
90

11

)
=

(
9

11

)(
10

11

)
= 1 ·

(
−1

11

)
.

(Since 9 is clearly a square). Now by the Theorem, we know that −1 is a quadratic residue if
and only if p is congruent to 1 mod 4. Since 11 ≡ 3 mod 4 we see that −1 is not a quadratic
residue. Thus (

90

11

)
= −1

and 90 is not a quadratic residue.

To some extent, Euler’s criterion allows us to determine whether or not a is a quadratic
residue. However, since it involves taking a large power, it is not clear how effective this

is. At the same time, the Lemma above shows that to compute Legendre symbol

(
a

p

)
, it

suffices to consider only the prime factors q of a and compute

(
q

p

)
. Since we can reduce

mod p, we can assume that q < p. From this perspective, it is natural to ask whether or

not there is some relationship between

(
q

p

)
and

(
p

q

)
. The answer is a resounding Yes and

is one of the most celebrated results of number theory. In the next section we present this
theorem of Quadratic Reciprocity and a sketch of the proof.

Main Points from Lecture 15:

• Quadratic residues

• The Legendre symbol

• Euler’s criterion

65



16 Quadratic Reciprocity (12.11.2015)

16.1 Introduction

Recall that the Legendre symbol

(
a

p

)
is defined for an odd prime p and integer a coprime

to p as (
a

p

)
=

{
1 if a is a quadratic residue mod p;

−1 otherwise;

The Law of Quadratic Reciprocity (stated below) decides if the equation x2 ≡ a( mod p) has

a solution x( mod p) by allowing the calculation of

(
a

p

)
. But to actually find a solution still

need to choose a primitive root g ∈ F×p , and write a ≡ gk(mod p). Then

(
a

p

)
= (−1)k, and

there is a solution if and only if k is even, in which case x ≡ gk/2(mod p) is a solution. For
n, a ∈ N the Law of Quadratic Reciprocity can be used to study the prime factors p | n2−a.

Recall too that for a, b coprime to p(
ab

p

)
=

(
a

p

)(
b

p

)
(easily proved by writing a, b as powers of a primitive root), and that, by Euler’s Crite-
rion(Proposition 15.2),(

−1

p

)
= (−1)

p− 1

2 =

{
1, if p ≡ 1 mod 4

−1, if p ≡ −1 mod 4.

Theorem 16.1 ( Law of Quadratic Reciprocity (Legendre, Gauss)). For distinct odd primes
p and q we have (

p

q

)(
q

p

)
= (−1)

p− 1

2
·
q − 1

2 .

(Thus

(
p

q

)
=

(
q

p

)
unless p and q are both ≡ −1 mod 4, in which case

(
p

q

)
= −

(
q

p

)
.)

There are now 246 recorded proofs of this (not all different), including six by Gauss – see
http://www.rzuser.uni-heidelberg.de/∼hb3/fchrono.html
We’ll give one of Gauss’s proofs, using

Lemma 16.2 ( Gauss’s Lemma). For an odd prime p, put p′ = p−1
2

, and let a be an integer
coprime to p. Consider the sequence

a, 2a, 3a, ..., p′a,

reduced mod p to lie in (−p
2
, p
2
). Then

(
a

p

)
= (−1)ν, where ν is the number of negative

numbers in this sequence.
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Proof. Now all of a, 2a, 3a, ..., p′a are ≡ modp to one of ±1,±2, . . . ,±p′. Further,

• no two are equal, as ia ≡ ja mod p⇒ i ≡ j mod p;

• none is minus another, as ia ≡ −ja mod p⇒ i+ j ≡ 0 mod p.

So they must be ±1,±2, . . . ,±p′, with each of 1, 2, . . . , p′ occurring with a definite sign.
Hence

a · 2a · 3a · . . . · p′a ≡ (±1) · (±2) · . . . · (±p′) mod p,

giving
ap
′
(p′)! ≡ (−1)ν(p′)! mod p,

and so, as (p′)! is coprime to p, that

ap
′ ≡ (−1)ν mod p.

Finally, using Euler’s criterion (Prop. 15.2), we have(
a

p

)
≡ ap

′ ≡ (−1)ν mod p.

Hence

(
a

p

)
= (−1)ν .

We can use Gauss’s Lemma to evaluate

(
2

p

)
.

Proposition 16.3. For p an odd prime we have

(
2

p

)
= (−1)

p2 − 1

8 .

(This is equal to 1 when p ≡ ±1 mod 8, and to −1 when p ≡ ±3 mod 8.)

Proof. There are four similar cases, depending on p mod 8. We give the details for p ≡
3 mod 8, p = 8`+ 3 say. Then p′ = 4`+ 1, and, taking a = 2 in Gauss’s Lemma, we see that
for the sequence

2, 4, 6, . . . , 4`, 4`+ 2, . . . , 8`+ 2

that this becomes
2, 4, 6, . . . , 4`,−(4`+ 1),−(4`− 1), . . . ,−3,−1

when reduced modp into the range (−p
2
,
p

2
). This clearly has 2` positive members, and

hence ν = p′ − 2` = 2`+ 1 negative members. Hence

(
2

p

)
= (−1)2`+1 = −1.

Doing the other three cases would be a good exercise!

We now use Gauss’s Lemma with a = q to prove the Law of Quadratic Reciprocity.
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Proof of Theorem 16.1. Take distinct odd primes p and q. For k = 1, 2, . . . , p′ write (one
step of the Euclidean algorithm)

kq = qkp+ rk (8)

say, where 1 6 rk 6 p− 1 and

qk =

⌊
kq

p

⌋
. (9)

(The quotient in the division algorithm is here expressed in terms of the floor function

bx c : R→ Z ; x 7→ bxc = largest integer 6 x .

For any integers A,B > 1, A = QB +R with Q = bA/Bc.) Now, working in Fp we have

{q, 2q, . . . , p′q} = {r1, r2, . . . , rp′} = {a1, a2, . . . , at} ∪ {−b1,−b2, . . . ,−bν},

as in Gauss’s Lemma. So the ai’s are in (0, p
2
) and the −bi’s are in (−p

2
, 0). (In fact t = p′−ν,

but not needed.) Now put

a =
t∑
i=1

ai, b =
ν∑
i=1

bi.

So, by the definition of the ai’s and −bi’s we have

p′∑
k=1

rk = a− b+ νp. (10)

Now, in the proof of Gauss’s Lemma we saw that

{a1, a2, . . . , at} ∪ {b1, b2, . . . , bν} = {1, 2, . . . , p′},

so that
p2 − 1

8
= 1 + 2 + · · ·+ p′ = a+ b. (11)

and

p2 − 1

8
q =

p′∑
k=1

kq

= p

p′∑
k=1

qk +

p′∑
k=1

rk (using (8))

= p

p′∑
k=1

qk + a− b+ νp, (using (10).) (12)
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Next, on subtracting (12) from (11) we get

p2 − 1

8
(q − 1) = p

p′∑
k=1

qk − 2b+ νp.

Reducing this mod 2 we have 0 ≡
∑p′

k=1 qk − ν mod 2, or ν ≡
∑p′

k=1 qk mod 2. Thus Gauss’s
Lemma gives (

q

p

)
= (−1)ν = (−1)

∑p′
k=1 qk = (−1)

∑p′
k=1b kqp c,

using (9).
Now, reversing the rôles of p and q we immediately get(

p

q

)
= (−1)

∑q′
`=1b `pq c,

where of course q′ = (q − 1)/2, and we’ve replaced the dummy variable k by `. So(
q

p

)(
p

q

)
= (−1)

{∑p′
k=1 b kqp c+

∑q′
`=1b `pq c

}
,

which equals (−1)p
′q′ , by the following proposition.

Proposition 16.4. Let p and q be two coprime odd positive integers. Then

p−1
2∑

k=1

⌊
kq

p

⌋
+

q−1
2∑
`=1

⌊
`p

q

⌋
=
p− 1

2
· q − 1

2
.

Proof. Consider the rectangle with corners (0, 0), (p/2, 0), (0, q/2) and (p/2, q/2). (Suggest
you draw it, along with its diagonal from (0, 0) to (p/2, q/2), and the horizontal axis the
k-axis, the vertical axis the `-axis. The diagonal is then the line with equation ` = kq/p.) We
count the number of integer lattice points (k, `) strictly inside this rectangle in two different
ways. First we note that these points form a rectangle with corners

(1, 1),

(
p− 1

2
, 1

)
,

(
1,
q − 1

2

)
,

(
p− 1

2
,
q − 1

2

)
,

so that there are p−1
2
· q−1

2
of them in all.

On the other hand, we count separately those below, above and on the diagonal. Below

the diagonal we have, for k = 1, . . . p−1
2

that
⌊
kq
p

⌋
is the number of points (k, `) with 1 6 ` 6

kq
p

, i.e., below the diagonal, in the kth column. So the total is
∑ p−1

2
k=1

⌊
kq
p

⌋
.

To count the number of lattice points above the diagonal, we flip the diagram over,
reversing the rôles of p and q, and of k and `. Then we get that the number of points above

the diagonal is
∑ q−1

2
`=1

⌊
`p
q

⌋
. It remains to check that there are no lattice points actually on

the diagonal. For if the integer lattice point (k, `) were on the diagonal ` = kq/p we would
have `p = kq so that, as p and q are coprime, p | k. But k < p, so this is impossible.
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16.2 Proofs of Infinitude of Primes

Euclid’s proof of the infinitude of primes was remarkable for its simplicity. To review, he
argued that if there are only finitely many primes p1, . . . , pk then the number p1 · · · pk + 1 is
not divisible by any prime, an absurdity. Thus there must be infinitely many.

You can actually get pretty far by just modifying this proof a little bit. For instance,
consider the following

Claim 16.5. If n is congruent to 3 mod 4 then it has a prime factor congruent to 3 mod 4.

The proof is simple: n is odd, so its factors are all odd. Such factors are either 1 or 3
mod 4. If they were all 1, then n itself would be 1 mod 4, which is isn’t. So n has to have a
factor congruent to 3 mod 4.

This claim gives us an easy proof of the following

Theorem 16.6. There are infinitely many primes of the form 4k + 3.

Proof. Suppose there were only finitely many such primes, call them p1, . . . , pk. Then con-
sider the number

N = 4p1 · · · pk − 1.

Then N is clearly congruent to 3 mod 4, and thus has a prime factor that is 3 mod 4 by the
claim. However, at the same time, N is not divisible by any of the pi. Hence they cannot
have been a full list of primes that were 3 mod 4.

We might hope that we could continue in this fashion to do other cases, but we soon
run into difficulties. For instance if we tried to prove that there are infinitely many primes
congruent to 1 mod 4 then this approach would not work. The problem is that the Claim
above is not true if we replace 3 with 1. Indeed, the issue is that pairs of factors that are
congruent to 3 mod 4 multiply to give 1 mod 4. For instance 3 · 7 = 21.

Using the Law of Quadratic Reciprocity, we can improve this somewhat.

Theorem 16.7. There are infinitely many primes of the form 4k + 1.

Proof. Suppose there were only finitely many such primes, call them p1, . . . , pk. Then con-
sider the number

N = 4(p1 · · · pk)2 + 1.

Then N is clearly congruent to 1 mod 4. Now let q be a prime factor of N . Then mod q we
see that

0 ≡ 4(p1 · · · pk)2 + 1

and thus
−1 ≡ (2p1 · · · pk)2

so −1 is a square mod q. But by QR, we know that −1 is a square if and only if q is congruent
to 1 mod 4. Hence all prime factors of N are congruent to 1 mod 4. However, at the same
time, N is not divisible by any of the pi. Hence they cannot have been a full list of primes
that were 1 mod 4.
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Problem 2 on Workshop 5 deals with showing there are infinitely many primes congruent
to 7 mod 8. For that problem you want to consider a number of the form (4p1 · · · pk)2 − 2.
You can also use this approach to show that there are infinitely many primes of the form
8k+3 and 8k+5, where you would use numbers of the form (p1 · · · pk)2+2 and (p1 · · · pk)2+4
respectively.

Main Points from Lecture 16:

• The Law of Quadratic Reciprocity

• Gauss’s Lemma

• Infinities of primes satisfying certain properties

17 Some Diophantine Equations (16.11.2015)

17.1 Fermat’s method of descent

Equations to be solved in integer variables are called Diophantine equations, in honour of
Diophantus of Alexandria, who in the 3rd century AD is first recorded as working on them.

Around 1640, Fermat developed a method for showing that certain Diophantine equations
had no (integer) solutions. In essence, the method is as follows: assume that the equation
does have a solution. Pick the ‘smallest’ (suitably defined) one. Use the assumed solution
to construct a smaller solution, contradicting the fact that the one you started with was the
smallest. This contradiction proves that there is in fact no solution. The technique is called
Fermat’s method of descent. It is, in fact, a form of strong induction. (Why?)

We illustrate the method with three examples.

17.2 A 2-variable quadratic equation with no nonzero integer so-
lution

Proposition 17.1. The equation x2 = 2y2 has no solution in positive integers, i.e.
√

2 is
irrational.

First proof. Assume there is a solution in positive integers x, y. Let 2a | x, 2b | y for the
highest a, b > 0, so that x = 2au, y = 2bv for odd integers u, v. Then x2 = 2y2 becomes
22au2 = 22b+1v2, so that 2a = 2b+ 1, a contradiction! So there is no such solution x, y.
Second proof. We use Fermat Descent. Again assume that there is a solution x, y in
positive integers. Define the size of the solution to be x + y. Choose a solution of smallest
size (not necessarily unique – that doesn’t matter). It follows from 2 | 2y2 = x2 that 2 | x2,
and so 2 | x. Put x = 2x1, so that (2x1)

2 = 2y2, or y2 = 2x21. Hence we have another solution
y, x1 of the original equation. But its size is y + x1 < y + x, contradicting the assumption
that we started with a solution of smallest size. Hence the assumption that there was a
solution must be wrong.
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We next look at a more complicated example. The principle of proving that there is no
solution is just the same, however.

17.3 A 4-variable quadratic equation with no nonzero integer so-
lution

Theorem 17.2. Let p and q be odd primes such that at least one of

(
p

q

)
,

(
q

p

)
is −1. Then

the equation
x2 + pqy2 = pz2 + qw2 (13)

has no solution in positive integers x, y, z, w.

Proof. In fact we’ll prove the slightly stronger assertion that (13) has no solution in nonneg-
ative integers x, y, z, w not all 0.

Suppose that say

(
p

q

)
= −1 and there is such a solution (x, y, z, w). Clearly we can

assume that x, y, z, w are all > 0. Define the size of such a solution by

s(x, y, z, w) = x+ y + z + w > 1

Among all such solutions (x, y, z, w), we choose one that has size s(x, y, z, w) as small as
possible.

Considering (13) mod q, we have that x2 ≡ pz2 mod q. If z 6≡ 0 mod q, we would have

(xz−1)2 ≡ p mod q, contradicting

(
p

q

)
= −1. Hence q | z, and so also q | x. Thus we can

write x = qx1, z = qz1, and so from (13) we have

(qx1)
2 + pqy2 = p(qz1)

2 + qw2.

Dividing by q and reordering the terms, we have

w2 + pqz21 = py2 + qx21,

which gives a new solution (w, z1, y, x1) of (13). Now x and z can’t both be 0, as then (13)
would give py2 = w2. This is impossible, as y and w aren’t both 0, and so the LHS is exactly
divisible by an odd power of p while the RHS is exactly divisible by an even power of p.
Hence either 0 < z1 < z or 0 < x1 < x (or both!), so we have s(w, z1, y, x1) = w+z1+y+x1 <
w + z + y + x = s(x, y, z, w). So we have found a solution of smaller size, contradicting the
fact that we started with one of minimal size. Hence no solution can exist.

Of course if, instead,

(
q

p

)
= −1, then we simply swap the rôles of p and q in the above

argument.

Corollary 17.3. If both p and q are primes ≡ −1 mod 4 then (13) has no solution in positive
integers.
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Proof. In this case quadratic reciprocity tells us that

(
p

q

)
= −

(
q

p

)
, so that one of these

Legendre symbols is −1. Hence the condition that at least one of

(
p

q

)
,

(
q

p

)
is −1 in

Theorem 17.2 applies.

Notes.

1. If both

(
p

q

)
=

(
q

p

)
= 1, then (13) can have a nonzero solution. For instance, when

p = 5, q = 11 we have

(
5

11

)
=

(
11

5

)
=

(
1

5

)
= 1, from Quadratic Reciprocity. And

indeed the equation x2 + 55y2 = 5z2 + 11w2 has the nonzero solutions

(x, y, z, w) = (4, 0, 1, 1) , (3, 1, 2, 2) , (7, 1, 1, 3) .

2. Theorem 17.2 can be strengthened to show that (13) has no solutions in nonnegative
integers not all 0. To see this, you follow the proof as above, but the size of the new
solution obtained, w + z1 + y + x1, is < w + z + y + x only if x and z are not both 0.
In this case the proof goes through as before.

However, if x = z = 0 then (13) gives py2 = w2. But this has no nonzero solution, as
is easily seen by replacing ‘2’ by ‘p’ in Proposition 17.1 – the proof is just the same.
Hence the case x = z = 0 cannot occur.

Our third example has a trickier proof, but again the underlying ‘descent’ method is the
same.

17.4 Fermat’s Last Theorem for exponent 4

Fermat’s Last Theorem is that the Diophantine equation

xn + yn = zn

can be solved by integers x, y, z > 1 only for n = 1, 2. (For n = 2 we have the Pythagorean
Triples). The theorem was first claimed by Fermat in 1637 in the margin of Diophantus’s
Arithmetica, although “the margin of the book was too large to accommodate the proof”.
So it was downgraded to the Fermat Conjecture. The conjecture was sensationally proved
by Sir Andrew Wiles in 1994. On YouTube you can see the marvellous 1996 BBC TV film
about what is now officially Fermat’s Last Theorem.

Theorem 17.4. The equation
x4 + y4 = z2 (14)

has no solution in positive integers x, y, z.
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Corollary 17.5 (Fermat’s Last Theorem for exponent 4). The equation x4 + y4 = z4 has
no solution in positive integers x, y, z.

This corollary is simply the special case of Theorem 17.4 where z is assumed to be a
square.

Proof of Theorem 17.4. (From H. Davenport, The higher arithmetic. An introduction
to the theory of numbers, Longmans 1952, p.162). Suppose that (14) has such a solution.
We can clearly assume that z 6= 1, i.e., that z > 1. We measure the size of a solution simply
by z. Assume we have a solution with z minimal. If d = gcd(x, y) > 1 we can divide by d4,
replacing x by x/d, y by y/d and z by z/d2 in (14), obtaining a solution with z smaller. So
we must have gcd(x, y) = 1 for our minimal solution.

Now from Corollary 7.9 we know that

X2 + Y 2 = Z2

has general solution (with gcd(X, Y ) = 1), possibly after interchanging X and Y of

X = p2 − q2 Y = 2pq Z = p2 + q2,

where p, q ∈ N and gcd(p, q) = 1, so

x2 = p2 − q2 y2 = 2pq z = p2 + q2.

As a square is ≡ 0 or 1 mod 4, and x is odd (because gcd(x, y) = 1), we see that p is odd
and q is even, say q = 2r. So

x2 = p2 − (2r)2
(y

2

)2
= pr.

Since gcd(p, r) = 1 and pr is a square, we have p = v2 and r = w2 say, so

x2 + (2w2)2 = v4.

Note that, as gcd(p, q) = 1, we have gcd(x, q) = 1 = gcd(x, 2w2). Hence, on applying
Corollary 7.9 again, we have

x = p21 − q21 2w2 = 2p1q1 v2 = p21 + q21,

where gcd(p1, q1) = 1 and not both are odd. Say p1 odd, q1 even. Thus w2 = p1q1, giving
p1 = v21, q1 = r21, say. Hence

v2(= p21 + q21) = v41 + r41,

which is another solution of (14)! But

v2 = p =
√
z − q2 <

√
z,

giving v < z1/4, so certainly v < z (as z > 1), contradicting the minimality of z.
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Main Points from Lecture 17:

• Diophantine equations without solutions

• Irrationality of
√

2

• Fermat’s method of descent

• Fermat’s Last Theorem for n = 4.

18 Representation of integers as sums of two squares

(19.11.2015)

Which n ∈ Z can be represented as a sum of two squares

n = x2 + y2 for x, y ∈ Z ?

Obviously need n > 0. Can clearly assume that x and y are > 0.

Here is what happens for low values of n

0 = 02 + 02 , 1 = 02 + 12 , 2 = 12 + 12 , 3 6= x2 + y2 , 4 = 02 + 22 ,

5 = 12 + 22 , 6 6= x2 + y2 , 7 6= x2 + y2 , 8 = 22 + 22 , 9 = 02 + 32 ,

10 = 12 + 32 , 11 6= x2 + y2 , 12 6= x2 + y2 , 13 = 22 + 32 , 14 6= x2 + y2 , . . . .

There is no apparent pattern.

Gauss was the first to observe that the question of expressing an integer as a sum of
two squares is closely related to the properties of complex numbers with integer real and
imaginary parts. The modulus of a complex number z = a+ib (a, b ∈ R) is the nonnegative
real number

‖z‖ =
√
a2 + b2 > 0 .

The product of two complex numbers z = a+ ib, w = c+ id is

zw = (a+ ib)(c+ id) = ac− bd+ i(ad+ bc)

with modulus

‖zw‖ =
√

(ac− bd)2 + (ad+ bc)2

=
√
a2c2 + b2d2 + a2d2 + b2c2 =

√
a2 + b2

√
c2 + d2 = ‖z‖ ‖w‖ .

A Gaussian integer is a complex number of the form

z = a+ ib
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with a, b ∈ Z. It is clear that the sum of Gaussian integers is a Gaussian integer

(a+ ib) + (c+ id) = (a+ c) + i(b+ d) .

An integer m ∈ N is a sum of squares m = a2 + b2 of integers a, b ∈ N if and only if it is the
square of the modulus (called the norm) of a Gaussian integer a+ ib

m = ‖a+ ib‖2 = a2 + b2 .

Proposition 18.2 below states that the product of sums of two squares is a sum of two squares:

(a2 + b2)(c2 + d2) = (ac− bd)2 + (ad+ bc)2

which is immediate from the product rule ‖zw‖ = ‖z‖ ‖w‖ for the modulus of the product of
complex numbers: the product of Gaussian integers is a Gaussian integer with the product
norm. The Wikipedia article on Gaussian integers is a brief introduction to the interesting
algebraic and geometric properties of the Gaussian integers. You might even wish to take a
Stroll through the Gaussian primes.

So the question of expressing an integer as a sum of two squares is reduced to the
expression of prime powers as sums of two squares.

Certainly every power of 2 is a sum of squares:

22k = (2k)2 + 02 , 22k+1 = (2k)2 + (2k)2 .

It will turn out that every power of an odd prime p ≡ 1(mod) is a sum of two squares, and
that only the even powers of odd prime p ≡ 3( mod 4) are sums of two squares. It will follow
that an integer n > 1 is a sum of two squares if and only if the the highest exponents of the
primes q | n with q ≡ −1(mod 4) are even - a theorem of Fermat (who pre-dated Gauss).

Important note:

(2k)2 ≡ 0 mod 4 and (2k + 1)2 = 8

(
k + 1

2

)
+ 1 ≡ 1 mod 8

so that
(even)2 ≡ 0 (mod, 4) , (odd)2 ≡ 1 (mod, 4) .

The sum n = x2 + y2 of two squares is

either (even)2+(even)2 ≡ 0 mod 4

or (odd)2+(odd)2 ≡ 2 mod 4

or (even)2+(odd)2 ≡ 1 mod 4.

If the sum n is odd then only the last case applies, so it must be n ≡ 1 mod 4.
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18.1 The case n = p, odd prime

Which primes are the sum of two squares?

Theorem 18.1. An odd prime p is a sum of two squares p = x2 + y2 (of integers) if and
only if p ≡ 1 mod 4.

Proof. We have already shown that if an odd number is a sum of two squares than it is
≡ 1 mod 4.

Conversely, assume p is an odd prime and p ≡ 1 mod 4. Knowing that then

(
−1

p

)
= 1

(Thm. 15.3), take r ∈ N with r2 ≡ −1 mod p. Define K = b√pc, note that

K <
√
p < K + 1, (15)

as
√
p 6∈ Z. The function

f : [0, K]× [0, K]→ Fp ; (u, v) 7→ u+ rv mod p

is from a set with (K + 1)2 > p elements to a set with p elements, so by the Pigeonhole
Principle, there exist (u1, v1) 6= (u2, v2) for which f(u1, v1) ≡ f(u2, v2) mod p. Hence

u1 + rv1 ≡ u2 + rv2 mod p

u1 − u2 ≡ −r(v1 − v2) mod p

a ≡ −rb mod p,

say, where a = u1 − v1 and b = v1 − v2 are not both 0. Hence a2 ≡ −b2 mod p as r2 ≡
−1 mod p, so that p | (a2 + b2). But |a| 6 K, |b| 6 K, giving

0 < a2 + b2 6 2K2 < 2p.

So a2 + b2 = p.

18.2 The general case

We now look at what happens if a prime ≡ −1 mod 4 divides a sum of two squares.

Proposition 18.2. Let q ≡ 3 mod 4 be prime, and q | (x2 + y2). Then q | x and q | y, so
that q2 | (x2 + y2).

Proof. Assume that it is not the case that both x and y are divisible by q, say q - x. Then

from x2 + y2 ≡ 0 mod q we get (yx−1)2 ≡ −1 mod q, contradicting

(
−1

q

)
= −1 (Thm.

15.3).

Proposition 18.3. If n is a sum of two squares and m is a sum of two squares then so is
nm.
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Proof. If n = a2 + b2 and m = c2 + d2 then

nm = (a2 + b2)(c2 + d2) = (ac− bd)2 + (ad+ bc)2.

Corollary 18.4. If n = A2
∏

i ni where A, ni ∈ Z and each ni is a sum of two squares, then
so is n.

Proof. Use induction on i to get n/A2 =
∏

i ni = a2 + b2 say. Then n = (Aa)2 + (Ab)2.

We can now state and prove our main result.

Theorem 18.5 ( Fermat). Write n in factorised form as

n = 2f2
∏

p≡1 mod 4

pfp
∏

q≡−1 mod 4

qgq ,

where (of course) all the p’s and q’s are prime. Then n can be written as the sum of two
squares of integers iff all the gq’s are even.

Proof. If all the gq are even then n = A2×(product of some p’s) and also ×2 if f2 is odd. So
we have n = A2 ×

∏
i(a

2
i + b2i ) by Theorem 18.1 (using also 2f2 = (2(f2−1)/2)2 + (2(f2−1)/2)2 if

f2 odd). Hence, by Corollary 18.4, n is the sum of two squares.
Conversely, suppose q | n = a2 + b2, where q ≡ −1 mod 4 is prime. Let qk be the highest

power of q dividing both a and b, so say a = qka1, b = qkb1. Then

n

q2k
= a21 + b21.

Now q -
n

q2k
, as otherwise q would divide both a1 and b1, by Prop. 18.2. Hence q2k is the

highest power of q dividing n, i.e., gq = 2k is even. Hence all the gq’s are even.

18.3 Related results

Proposition 18.6. If an integer n is the sum of two squares of rationals then it’s the sum
of two squares of integers.

Proof. Suppose that

n =
(a
b

)2
+
( c
d

)2
for some rational numbers a/b and c/d. Then

n(bd)2 = (da)2 + (bc)2.

Hence, by Thm 18.5, for every prime q ≡ −1 mod 4 with qi|n(bd)2, i must be even. But then
if q`|bd then qi−2`|n, with i− 2` even. Hence, by Thm 18.5 (in the other direction), n is the
sum of two squares of integers.
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Corollary 18.7. A rational number n/m is the sum of two squares of rationals iff nm is
the sum of two squares of integers.

Proof. If nm = a2 + b2 for a, b ∈ Z then

n

m
=
( a
m

)2
+

(
b

m

)2

.

Conversely, if
n

m
=
(a
b

)2
+
( c
d

)2
then

nm =
(am
b

)2
+
(cm
d

)2
.

Hence, by Prop. 18.6, nm is the sum of two squares of integers.

18.4 Finding all ways of expressing a rational as a sum of two
rational squares

Now let h be a rational number that can be written as the sum of two squares of rationals.
We can then describe all such ways of writing h.

Theorem 18.8. Suppose that h ∈ Q is the sum of two rational squares: h = s2 + t2, where
s, t ∈ Q. Then the general solution of h = x2 + y2 in rationals x, y is

x =
s(u2 − v2)− 2uvt

u2 + v2
y = −

(
t(u2 − v2) + 2uvs

u2 + v2

)
, (16)

where u, v ∈ Z and are not both zero.

Proof. We are looking for all points (x, y) ∈ Q2 on the circle x2 + y2 = h. If (x, y) is such a
point, then for x 6= s the chord through (s, t) and (x, y) has rational slope (t− y)/(s− x).

Conversely, take a chord through (s, t) of rational slope r, which has equation y =
r(x− s) + t. Then for the intersection point (x, y) of the chord and the circle we have

x2 + (r(x− s) + t)2 = h,

which simplifies to

x2(1 + r2) + 2rx(t− rs) + (r2 − 1)s2 − 2rst = 0,

using the fact that t2 − h = −s2. This factorises as

(x− s)((1 + r2)x+ 2rt+ s(1− r2)) = 0.

For x 6= s we have

x =
s(r2 − 1)− 2rt

1 + r2

79



and

y = t+ r(x− s)

= −
(
t(r2 − 1) + 2sr

1 + r2

)
,

on simplification. Finally, substituting r = u/v gives (16). Note that v = 0 in (16) (i.e.,
r =∞) gives the point (r,−s).

Corollary 18.9. The general integer solution x, y, z of the equation x2 + y2 = nz2 is

(x, y, z) = (a(u2 − v2)− 2uvb, b(u2 − v2) + 2uva, u2 + v2),

where n = a2 + b2, with a, b, u, v ∈ Z, and u, v arbitrary.

(If n is not the sum of two squares, then the equation has no nonzero solution, by Prop.
18.6.)

In particular, for n = 1 = 12 + 02, we see that the general integer solution to Pythagoras’
equation x2 + y2 = z2 is

(x, y, z) = (u2 − v2, 2uv, u2 + v2).

For a socalled primitive solution — one with gcd(x, y) = 1 — choose u, v with gcd(u, v) = 1
and not both odd.

The same method works for Ax2 +By2 + Cz2 = 0.

18.5 Sums of three squares, sums of four squares

Proposition 18.10. No number of the form 4a(8k + 7), where a is a nonnegative integer,
is the sum of three squares (of integers).

Proof. Use induction on a. For a = 0: Now n2 ≡ 0, 1 or 4 mod 8, so a sum of three squares
is ≡ 1 or 1 or 2 or 3 or 4 or 5 or 6 mod 8, but 6≡ 7 mod 8.

Assume result true for some integer a > 0. If 4a+1(8k+ 7) = n2
1 + n2

2 + n2
3 then all the ni

must be even, and so = 4(n′21 +n′22 +n′23 ) say. But then 4a(8k+ 7) = n′21 +n′22 +n′23 , contrary
to the induction hypothesis.

In fact (won’t prove)

Theorem 18.11 (Legendre 1798, Gauss). All positive integers except those of the form
4a(8k + 7) are the sum of three squares.

Assuming this result, we can show

Corollary 18.12 (Lagrange 1770). Every positive integer is the sum of four squares.

Proof. The only case we need to consider is n = 4a(8k+7). But then n−(2a)2 = 4a(8k+6) =
22k+1(4k + 3), which (being exactly divisible by an odd power of 2) is not of the form
4a
′
(8k′ + 7), so is the sum of three squares.
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The Wikipedia article on the Lagrange four-square theorem has much to recommend it.

Main Points from Lecture 18:

• An odd prime p is a sum of two squares iff p mod 1 mod 4

• Fermat: a positive integer n is a sum of two squares iff for every odd prime q|n with
q ≡ −1 mod 4 the highest power of q dividing n is even.

• An integer is a sum of two squares of rationals iff it is a sum of two squares of integers.

19 Primality testing (23.11.2015)

19.1 Introduction

The applications of number theory to cryptography depend both on you being able to rec-
ognize large primes, and on other people not being able to recognize them! You need to
recognize which numbers are prime in order to encode information, but the security of the
data transmission depends on the opposition not being able to work out what these primes
actually are. For example, in the RSA cryptosystem the public encryption key is the product
n = pq of two primes p, q so large that it is not feasible to factor n.

Factorization is concerned with the problem of developing efficient algorithms to express
a given positive integer n > 1 as a product of powers of distinct primes. With primality
testing, however, the goal is more modest: given n, decide whether or not it is prime. If
n does turn out to be prime, then of course you’ve (trivially) factorised it, but if you show
that it is not prime (i.e., composite), then in general you have learnt nothing about its
factorisation (apart from the fact that it’s not a prime!).

One way of testing a number n for primality is the following: suppose a certain theorem,
Theorem X say, whose statement depends on a number n, is true when n is prime. Then if
Theorem X is false for a particular n, then n cannot be prime.

It would be good if we could find a Theorem Y that was true iff n was prime, and was
moreover easy to test. Then we would know that if the theorem was true for n then n
was prime. A result of this type is the following (also on a problem sheet): n is prime iff
an−1 ≡ 1 mod n for a = 1, 2, . . . , n− 1. This is, however, not easy to test; it is certainly no
easier than testing whether n is divisible by a for a = 1, . . . , n.

19.2 Wilson’s Theorem and its converse

Here is a theorem which gives a necessary and sufficient condition (hard to verify in practice)
for n to be prime.

Theorem 19.1. A positive integer n > 2 is prime if and only if (n− 1)! ≡ −1 mod n.
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Proof. One way round is just Wilson’s Theorem 9.4: if p is prime then (p− 1)! ≡ −1 mod p.
For the converse, assume that n is composite and (n − 1)! ≡ −1 mod n. Let n = ab

with 1 < a < n and 1 < b < n, so that a | (n − 1)!. We now have a | n and also that
n | ((n− 1)! + 1), so that a | (n− 1)! + 1. Hence

a | ((n− 1)! + 1)− (n− 1)! = 1 ,

a contradiction. So n is prime.

Example 19.2. 5! = 120 6≡ −1 mod 6, so n = 6 is not a prime.

The application of Theorem 19.1 in practice requires n−2 multiplications mod n to calcu-
late (n−1)! mod n, which isO(n(log2 n)2). See https://en.wikipedia.org/wiki/Big O notation
for the Big O terminology: a numerical function f(n) is O(g(n)) if there exist numbers
M,n0 > 0 such that f(n) 6Mg(n) for all n > n0.

19.3 Fermat’s Little Theorem (again), and pseudoprimes

Recall Fermat’s Little Theorem 9.5: if p is prime then ap ≡ a mod p for every a mod p. So
if for some n have an 6≡ a (mod n) for some a 6≡ 0 mod n then n is not prime.

Example 19.3. For a = 2 and n = 63

263 = 260.23 = 6410.8 = 8 6≡ 2 mod 63

so that 63 is not prime. (Of course it is easier to just observe 63=7.9).

It is known that for all the numbers 1 6 n 6 340 if 2n ≡ 2(mod n) then n is prime. But
n = 341 shows that the converse of Fermat’s Little Theorem is false:

Example 19.4. Let n = 341 = 11.31. By Fermat’s Little Theorem we have 210 ≡ 1 mod 11,
so that

2340 = (210)34 = 1(mod 11) .

Also
2340 = (25)68 = 3268 = 1(mod 31) .

Hence 2341 ≡ 2(mod 341), even though n = 341 is not a prime.

There is also a version of Fermat’s Little Theorem for a prime p and a coprime to p, in
which case ap−1 ≡ 1 mod p. This condition is necessary but not sufficient for a number n to
be prime, as shown by the above example.

A number n is a pseudoprime to base a if n 6 |a and an−1 ≡ 1 (mod n) but n is not
actually a prime.

In general, there are far fewer pseudoprimes n to the base a not exceeding a specified
bound, than there are primes. For example, there are 455,052,511 primes less than 1010, but
only 14,884 pseudoprimes.
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19.4 Proving primality of n when n− 1 can be factored

In general, primality tests can only tell you that a number n either ‘is composite’, or ‘can’t
tell’. They cannot confirm that n is prime. However, under the special circumstance that
we can factor n− 1, primality can be proved:

Theorem 19.5 ( Lucas Test, as strengthened by Kraitchik and Lehmer). Let n > 1 have the
property that for every prime factor q of n−1 there is an integer a such that an−1 ≡ 1 mod n
but a(n−1)/q 6≡ 1 (mod n). Then n is prime.

Proof. Define the subgroup G of (Z/nZ)× to be the subgroup generated by all such a’s.
Clearly the exponent of G is a divisor of n − 1. But it can’t be a proper divisor of n − 1,
for then it would divide some (n − 1)/q say, which is impossible as a(n−1)/q 6≡ 1 (mod n)
for the a corresponding to that q. Hence G has exponent n − 1. But then n − 1 ≤ #G ≤
#(Z/nZ)× = ϕ(n). Hence ϕ(n) = n− 1, which immediately implies that n is prime.

Corollary 19.6 (Pepin’s Test, 1877). Let Fk = 22k + 1, the kth Fermat number, where

k ≥ 1. Then Fk is prime iff 3

Fk − 1

2 ≡ −1 mod Fk.

Proof. First suppose that 3

Fk − 1

2 ≡ −1 mod Fk. We apply the theorem with n = Fk. So

n − 1 = 22k and q = 2 only, with a = 3. Then 3

Fk − 1

2 6≡ 1 (mod Fk) and (on squaring)
3Fk−1 ≡ 1 mod Fk, so all the conditions of the Theorem are satisfied.

Conversely, suppose that Fk is prime. Then, by Euler’s criterion (Proposition 15.2) and
quadratic reciprocity (see Chapter 5) we have

3

Fk − 1

2 ≡
(

3

Fk

)
=

(
Fk
3

)
=

(
2

3

)
= −1,

as 2 is not a square mod3.

We can use this to show that F0 = 3, F1 = 5, F2 = 17, F3 = 257 and F4 = 65537 are all
prime. It is known that Fk is composite for 5 ≤ k ≤ 32, although complete factorisations of
Fk are known only for 0 ≤ k ≤ 11, and there are no known factors of Fk for k = 20 or 24.
Heuristics suggest that there may be no more k’s for which Fk is prime.

19.5 Carmichael numbers

A Carmichael number is a (composite) number n that is a pseudoprime to every base a
with 1 ≤ a ≤ n and gcd(a, n) = 1. Since it it immediate that an−1 6≡ 1 (mod n) when
gcd(a, n) > 1, we see that Carmichael numbers are pseudoprimes to as many possible bases
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as any composite number could be. They are named after the US mathematician Robert
Carmichael (1879 – 1967).

[But even finding an a with gcd(a, n) > 1 gives you a factor of n. (Imagine that n is
around 10300 and is a product of three 100-digit primes – such a’s are going to be few and
far between!)]

Example 1. The number n = 561 = 3.11.17 is a Carmichael number. To see this
take a : gcd(a, 561) = 1, so that a is coprime to each of 3, 11 and 17. So, by Fermat, we
have a2 ≡ 1 mod 3, a10 ≡ 1 mod 11 and a16 ≡ 1 mod 17. Now lcm(2, 10, 16) = 80 so that,
taking appropriate powers, we have that a80 ≡ 1 mod 3.11.17. Finally a560 = (a80)7 ≡ 17 ≡
1 mod 560, so that indeed n = 561 is Carmichael.

For more examples of Carmichael numbers, see Workshop 4.

19.5.1 Properties of Carmichael numbers

Theorem 19.7 ( See Qs 14 and 15, Workshop 4). An integer n > 1 is a Carmichael number
iff n is squarefree and p− 1 | n− 1 for each prime p dividing n.

Proposition 19.8 ( See Q 18, Workshop 4). Every Carmichael number has at least 3 distinct
prime factors.

A curious result is the following.

Theorem 19.9 ( See Q 17, Workshop 4). An integer n > 1 has the property that

(a+ b)n ≡ an + bn mod n for all a, b ∈ Z

iff either n is a prime number or n is a Carmichael number.

19.6 Strong pseudoprimes

Given n > 1 odd and an a such that an−1 ≡ 1 mod n, factorise n− 1 as n− 1 = 2fq, where
q is odd, f ≥ 1 and consider the sequence

S = [aq, a2q, a4q, . . . , a2
f q ≡ 1],

taken (mod n). If n is prime then, working left to right, either aq ≡ 1 mod n, in which
case S consists entirely of 1’s, or the number before the first 1 must be −1. This is because
the number following any x in the sequence is x2, so if x2 ≡ 1 mod n for n prime, then
x ≡ ±1 mod n. (Why?) A composite number n that has this property, (i.e., is a pseudoprime
to base a and for which either S consists entirely of 1’s or the number before the first 1 in
S is −1) is called a strong pseudoprime to base a.

Clearly, if n is a prime or pseudoprime but not a strong pseudoprime, then this stronger
test proves that n isn’t prime. This is called the Miller-Rabin Strong Pseudoprime Test.
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Example 2. Take n = 31621. It is a pseudoprime to base a = 2, as 2n−1 ≡ 1 mod n but
5n−1 ≡ 12876 mod n (so n not prime). We have n− 1 = 22 · 7905, 27905 ≡ 31313 mod n and
215810 ≡ 231620 ≡ 1 mod n, so n is not a strong pseudoprime to base 2.

19.7 Strong pseudoprimes to the smallest prime bases

It is known that

• 2047 is the smallest strong pseudoprime to base 2;

• 1373653 is the smallest strong pseudoprime to both bases 2, 3;

• 25326001 is the smallest strong pseudoprime to all bases 2, 3, 5;

• 3215031751 is the smallest strong pseudoprime to all bases 2, 3, 5, 7;

• 2152302898747 is the smallest strong pseudoprime to all bases 2, 3, 5, 7, 11;

• 3474749660383 is the smallest strong pseudoprime to all bases 2, 3, 5, 7, 11, 13;

• 341550071728321 is the smallest strong pseudoprime to all bases 2, 3, 5, 7, 11, 13, 17.

(In fact 341550071728321 is also a strong pseudoprime to base 19.)
Hence any odd n < 341550071728321 that passes the strong pseudoprime test for all

bases 2, 3, 5, 7, 11, 13, 17 must be prime. So this provides a cast-iron primality test for all
such n.

19.8 Factorising weak pseudoprimes

Let us call a pseudoprime to base a that is not a strong pseudoprime to base a a weak
pseudoprime to base a.

Theorem 19.10. An odd weak pseudoprime n to base a can be factored into n = n1n2,
where n1, n2 > 1.

Proof. When the strong pseudoprime test detects n as being composite, what happens is that
some x ∈ S is a solution to x2 ≡ 1 mod n with x 6≡ ±1 (mod n) because x ≡ 1 mod n1 and
x ≡ −1 mod n2 for some coprime n1, n2 with n1n2 = n. And then both g− := gcd(x− 1, n)
(divisible by n1) and g+ := gcd(x+1, n) (divisible by n2) are nontrivial factors of n. Further,
2 = (x+1)−(x−1) = k+g+−k−g− say, for some integers k+, k−. So, because n is (assumed)
odd, g+ and g− are coprime. As they are also factors of n, they must actually equal n1 and
n2 respectively.
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Example 2 revisited. Take n = 31621.Then x = 31313 and gcd(n, 31312) = 103 and
gcd(n, 31314) = 307, giving the factorisation n = 103 · 307.

Note that if n = n1n2 where n1 and n2 are coprime integers, then by the Chinese Re-
mainder Theorem we can solve each of the four sets of equations

x ≡ ±1 mod n1 x ≡ ±1 mod n2

to get four distinct solutions of x2 ≡ 1 mod n. For instance, for n = 35 get x = ±1 or ±6.
For the example n = 31621 above, we have 31313 ≡ 1 mod 103 and 31313 ≡ −1 mod 307,
so that four distinct solutions of x2 ≡ 1 mod 31621 are ±1 and ±31313.

19.9 Primality testing in ‘polynomial time’

In 2002 the Indian mathematicians Agrawal, Kayal and Saxena invented an algorithm, based
on the study of the polynomial ring (Z/nZ)[x], that was able to decide whether a given n
was prime in time O((log n)6+ε). (Here the constant implied by the ‘O’ depends on ε and so
could go to infinity as ε→ 0.) (Search for ‘AKS algorithm’ on web.)

19.10 The Lucas-Lehmer primality test for Mersenne numbers

Given an odd prime p, let Mp = 2p − 1, a Mersenne number (and a Mersenne prime iff it is
prime). [It is an easy exercise to prove that if p is composite, then so is Mp.] See section 13
fro an an introduction to Mersenne numbers.

Define a sequence S1, S2, . . . , Sn, . . . by S1 = 4 and Sn+1 = S2
n− 2 for n = 1, 2, . . . . so we

have
S1 = 4, S2 = 14, S3 = 194, S4 = 37634, S5 = 1416317954, . . . .

There is a very fast test for determining whether or not Mp is prime.

Theorem 19.11 ( Lucas-Lehmer Test). For an odd prime p, the Mersenne number Mp is
prime iff Mp divides Sp−1.

So M3 = 7 is prime as 7 | S2, M5 = 31 is prime as 31 | S4,. . . . In this way get Mp prime
for p = 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, . . . (47th) 43112609.
There may be others between the 41st and 47th. [as at October 2012.]

For the proof, we need two lemmas.

Lemma 19.12. Put ω = 2 +
√

3 and ω1 = 2−
√

3. Then ωω1 = 1 (immediate) and

Sn = ω2n−1

+ ω2n−1

1

for n = 1, 2, . . . .

The proof is a very easy induction exercise.
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Lemma 19.13. Let r be a prime ≡ 1 mod 3 and ≡ −1 mod 8 (i.e., ≡ 7 mod 24). Then

ω

r + 1

2 ≡ −1 mod r.

(So it’s equal to a+ b
√

3 where a ≡ −1 mod r and b ≡ 0 mod r.)

Proof. Put

τ =
1 +
√

3√
2

and τ1 =
1−
√

3√
2

.

Then we immediately get ττ1 = −1, τ 2 = ω and τ 21 = ω1. Next, from τ
√

2 = 1 +
√

3 we have
(τ
√

2)r = (1 +
√

3)r, so that

τ r2
r−1
2

√
2 = 1 +

r−1∑
j=1

(
r

j

)
(
√

3)j + 3
r−1
2

√
3

≡ 1 + 3
r−1
2

√
3 mod r, (17)

as r |
(
r
j

)
. Since r ≡ −1 mod 8 we have

2
r−1
2 ≡

(
2

r

)
= (−1)

r2−1
8 ≡ 1 mod r,

using Euler’s Criterion, and Prop. 5.3. Further, since r ≡ 1 mod 3 and r ≡ −1 mod 4 we
have

3

r − 1

2 ≡
(

3

r

)
=
(r

3

)
(−1)

r − 1

2
·
3− 1

2 =

(
1

3

)
· (−1) ≡ −1 mod r,

using Euler’s Criterion again, and also Quadratic Reciprocity (Th. 5.1). So, from (17), we
have successively

τ r
√

2 ≡ 1−
√

3 mod r

τ r ≡ τ1 mod r

τ r+1 ≡ ττ1 = −1 (mod r)

ω
r+1
2 ≡ −1 mod r,

the last step using τ 2 = ω.

Proof of Theorem 19.11. Mp prime ⇒ Mp | Sp−1. Assume Mp prime. Apply Lemma
19.13 with r = Mp, which is allowed as Mp ≡ −1 mod 8 and Mp ≡ (−1)p− 1 ≡ 1 mod 3. So

ω

Mp + 1

2 = ω2p−1 ≡ −1 mod Mp (18)
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and, using Lemma 19.12, including ω−11 = ω, we have

Sp−1 = ω2p−2

+ ω2p−2

1 = ω2p−2

1

((
ω−11

)2p−2

ω2p−2

+ 1
)

= ω2p−2

1

(
ω2p−1

+ 1
)
≡ 0 mod Mp, (19)

the last step using (18).
Mp | Sp−1 ⇒ Mp prime. Assume Mp | Sp−1 but Mp composite. We aim for a

contradiction. Then Mp will have a prime divisor q (say) with q2 ≤Mp.

Now consider the multiplicative group G =

(
Z[
√
3]

(q)

)×
of units of the ring

Z[
√
3]

(q)
. Then G

has coset representatives consisting of numbers a+b
√

3 with a, b ∈ {0, 1, 2, . . . , q−1} that are
also invertible (mod q). So G is a group of size (order) at most q2 − 1, with multiplication
defined modulo q. From ω(ω1 + q

√
3) ≡ 1 mod q we see that ω = 2 +

√
3 is invertible, and

so ω ∈ G. [Strictly speaking, the coset ω (mod q) ∈ G.]
Now, using Mp | Sp−1 we see that (19) holds even when Mp is composite, so we have

successively that ω2p−1
+ 1 ≡ 0 mod Mp, ω

2p−1 ≡ −1 mod q and ω2p ≡ 1 mod q. Hence the
order of ω in G is 2p. Then 2p | #G ≤ q2− 1 ≤Mp− 1 = 2p− 2, a contradiction. Hence Mp

must be prime.

In practice, to test Mp for primality using Theorem 19.11, one doesn’t need to com-
pute Sj(j = 1, 2, . . . , p − 1), but only the much smaller (though still large!) numbers Sj
(mod Mp)(j = 1, 2, . . . , p− 1).

Main Points from Lecture 19:

• The converse of Wilson’s theorem is true

• The converse of Fermat’s Little Theorem is false

• Pseudoprimes

• Carmichael numbers

20 Integer Factorisation (26.11.2015)

In this chapter we review the historic techniques of Trial Division, the Sieve of Eratosthenes,
and Fermat’s factorisation method. We then study two simply-programmable integer fac-
torisation algorithms, both due to Pollard.

20.1 Trial Division

Given n > 1, try dividing n successively by the primes 2, 3, . . . , up to the largest prime
≤
√
n. If any such prime divides n, then of course you have found a factor, and you can
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continue the process by applying the same procedure to n/p. On the other hand, if none of
these primes divides n, then n itself is prime. Why?

Lemma 20.1. If n > 1 is composite then it is divisible by a prime ≤
√
n.

Proof. Say n = n1n2, where n1, n2 > 1. If both were >
√
n then n = n1n2 would be

>
√
n
2

= n, a contradiction. Hence one of n1 or n2, say n1, is ≤
√
n. Then any prime factor

p of n1 certainly divides n, and so p ≤ n1 ≤
√
n, as required.

Trial division requires knowledge of all primes ≤
√
n. How to find them?

20.2 The Sieve of Eratosthenes

To find all primes up to N (e.g., for N = b
√
nc), write down 2, 3, 4, 5, 6, . . . , N and

• cross off all multiples of 2, except 2 itself. Then the first uncrossedout number (3) is
prime.

• cross off all multiples of 3, except 3. Then the first uncrossedout number (5) is prime.

Proceed in this way until you have crossed out all multiples of p, except p itself, for all primes
≤
√
N . Then the uncrossedout numbers consist of all the primes ≤ N . This is because, by

Lemma 20.1, all composite numbers ≤ N are divisible by a prime ≤
√
N , and so have been

crossed out.
Thus to apply trial division on n you would need to apply the Sieve of Eratosthenes with

N ≈ n1/4 in order to find all primes up to n1/2.

20.3 Fermat’s factorisation method

Take n > 1 and odd. Fermat’s idea is to try to write n as n = x2 − y2, as then n =
(x+ y)(x− y). So if x > y + 1 we get a nontrivial factorisation of n.

We successively try x = d
√
ne, d

√
ne + 1, d

√
ne + 2, . . . , until x2 − n is a square, = y2

say. Then x2 − n = y2, or n = (x + y)(x − y). (This process will eventually terminate, as
for x = (n+ 1)/2 we have x2 − n = ((n− 1)/2)2. But this only give the trivial factorisation
n = n · 1.)

Example 1. n = 2479, d
√
ne = 50, 502 − n = 21, 512 − n = 122, 522 − n = 225 = 152,

giving n = 522 − 152 = (52 + 15)(52− 15) = 67 · 37.

Example 2. n = 3953, d
√
ne = 63, 632 − n = 16 = 42, giving n = 632 − 42 =

(63 + 4)(63− 4) = 67 · 59.

This method works well if n has two factors close together (so that y is small), but is
otherwise slow. However, the idea of trying to write n as a difference of two squares is a
factorisation idea used in several other factorisation algorithms, for instance in the Quadratic
Sieve algorithm.
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20.4 Pollard’s p− 1 method

Take n > 1 and odd, and suppose that n has a prime factor p. Then, if p − 1 | k! for some
k, say k! = (p− 1)q, then

2k! = (2q)p−1 ≡ 1 mod p,

by Fermat’s Little Theorem, so that p | 2k!− 1. Hence p | gcd(2k!− 1, n). So long as this gcd
isn’t n, we obtain a nontrivial (i.e., not 1 or n) factor of n.

So algorithm is:

Compute modulo n 2, 22! = 22, 23! = 22!3, 24! = 23!4, . . . , 2k! = 2(k−1)!k until n > gcd(n, 2k!−
1) > 1. Then gcd(n, 2k! − 1) is a nontrivial factor of n.

Maple code for Pollard p− 1:

r:=2;g:=1;

for k to n while g=1 or g=n do

r:=r^k mod n; g:=gcd(r-1,n);

end do;

print(g,k);

At worst k could be near (n− 1)/2, but is sometimes much smaller. It is generally large
when all prime factors p of n are such that p− 1 has a large prime factor. It is small when
n has a prime factor p for which all prime factors of p− 1 are small.

Example 1 again. n = 2479. Here k = 6 is enough, as 37 − 1 = 36 | 6!, showing that
p = 37 is a factor.

Example 2 again. n = 3953. Here k = 11 is enough, as 67− 1 = 66 | 11!, showing that
p = 67 is a factor.

20.5 Pollard rho

The idea: for some function f : N → N define an integer sequence, starting with a ‘seed’
x0, and defining xk+1 ≡ f(xk) mod n for k ≥ 0. if these numbers are fairly random (mod
n) then we’d expect to need about

√
n of them before two will be equal (mod n). [Compare

the ‘Birthday Paradox’ in Probability Theory, where 23 people chosen at random have,
under standard assumptions, a 50% probability of containing a pair that share a birthday.]
However, if p is the smallest prime factor of n, and p is much smaller than n, we’d expect that
roughly

√
p of the xi are needed before two are equal (mod p). Then if indeed xi ≡ xj mod p

we have p | gcd(xi− xj, n). Provided that xi 6≡ xi (mod n), this will yield a proper factor of
n.

The name ‘Pollard rho’ comes from the ρ-shaped diagram you can draw, consisting of a
path from x0 to x1, x1 to x2, and so on, until the path curls around to intersect itself with
xj ≡ xi mod p.
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In practice we can take x0 = 2 and f(x) = x2 + 1. If xi ≡ xj mod p with 0 < i < j, then

xi+1 ≡ f(xi) ≡ f(xj) ≡ xj+1 mod p.

Proceeding in this way, we have

xi+s ≡ xj+s mod p for s = 1, 2, 3, . . . . (20)

Also
xi ≡ xj ≡ f j−i(xi) ≡ f j−i(xj) ≡ xj+(j−i) ≡ x2j−i,

where f j−i is the (j − i)-fold iterate of f . Hence we can add j − i to the index repeatedly,
to obtain

xi ≡ xj ≡ xj+(j−i) ≡ xj+2(j−i) ≡ . . . mod p.

Thus, by if necessary replacing j by j + (a multiple of j − i), we can make j as large as
we like. In particular, we can assume that j ≥ 2i.

Now take s = j − 2i in (20), giving xj−i ≡ x2(j−i) mod p. So in fact we just need to find
some k such that

n > gcd(x2k − xk, n) > 1.

(So we do not need to compare xj with all previous xi’s for i < j.)

Maple code for Pollard rho:

g:=1;x[0]:=2;

for k to 100 while g=1 or g=n do

x[k]:=x[k-1]^2+1 mod n;

if k mod 2 = 0 then g:=gcd(x[k]-x[k/2],n); end if;

end do;

k:=k-1;

print(k,g);

(The choice of 100 as the maximum value for k is somewhat ad hoc, and can of course
be increased.)

Example 1 yet again. n = 2479. Here k = 6, and g = 37 is a factor.

Example 2 yet again. n = 3953. Here k = 12, and g = 59 is a factor.

Example 3. n = 10092. Here k = 98 and g = 1009 is a (prime) factor.

This last example shows that the algorithm does not work so well (i.e., k is large) if the
prime factors of n are large.
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20.6 Final remarks.

• To specify a factoring algorithm, it’s enough to have a general method that, for a given
composite n, factors n as n = n1n2, where both n1, n2 > 1. For then you can test n1

and n2 for primality and, if either is composite, recursively apply your algorithm to
them. In this way you will eventually be able to write n as a product of powers of
distinct primes. So your algorithm does not need to explicitly specify how to do this.

• In order to factor n, it’s enough to find k: 1 < gcd(k, n) < n, as then gcd(k, n) is a
nontrivial factor of n, with n = n1n2, where n1 = gcd(k, n) and n2 = n/ gcd(k, n).

But if say n = pq where p, q are primes ≈ 10300, then ϕ(n) = (p − 1)(q − 1) =
n−p−q+1 ≈ 10600, and n−ϕ(n) = p+q−1 ≈ 2 ·10300. So a random k ∈ {1, 2, . . . , n}
has a probability of ≈ 2 · 10−300 of having gcd(k, n) > 1 – vanishingly small!

• If we can find a solution x to the equation x2 ≡ 1 mod n that’s not x = ±1 then we can
factor n. This is because such a solution will produce n = n1n2 where n1 = gcd(x−1, n)
and n2 = gcd(x + 1, n). For more details see also the end of Chapter 6, where this
method is applied to factorise a ‘weak pseudoprime’.

Conversely, any nontrivial factorisation n = n1n2 with gcd(n1, n2) = 1 gives rise to
four solutions of x2 ≡ 1 mod n. This is because we can use the Chinese Remainder
Theorem to solve the equations x ≡ −1 mod n1, x ≡ 1 mod n2. Then x and −x are
both solutions of x2 ≡ 1 mod n, and neither is either of ±1.

• Other factorisation methods:

– The Quadratic Sieve – the best general algorithm for numbers up to 10100;

– The General Number Field Sieve – best for larger n (not of a special form).

For more factorisation methods see Wikipedia “integer factorization”.
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ADDITIONAL TOPICS

Notes by Prof. Chris Smyth

Not lectured on in 2015

21 Dirichlet series

For an arithmetic function f , define its Dirichlet series Df (s) by

Df (s) =
∞∑
n=1

f(n)

ns
.

Here s ∈ C is a parameter. Typically, such series converge for <s > 1, and can be mero-
morphically continued to the whole complex plane. However, we will not be concerned with
analytic properties of Dirichlet series here, but will regard them only as generating functions
for arithmetic functions, and will manipulate them formally, without regard to convergence.

The most important example is for f(n) = 1 (n ∈ N), which gives the Riemann zeta
function ζ(s) =

∑∞
n=1

1
ns . Also, taking f(n) = n (n ∈ N) gives ζ(s− 1). (Check!).

Proposition 21.1. If f is multiplicative then

Df (s) =
∏
p

(
1 +

f(p)

ps
+
f(p2)

p2s
+ · · ·+ f(pk)

pks
+ . . .

)
=
∏
p

Df,p(s), (21)

say.

Proof. Expanding the RHS of (21), a typical term is

f(pe11 )f(pe22 ) . . . f(perr )

pe11 p
e2
2 . . . perr

=
f(n)

ns

for n =
∏r

i=1 p
ei
i , using the fact that f is multiplicative.

Such a product formula Df (s) =
∏

pDf,p(s) over all primes p is called an Euler product
for Df (s).

For example

ζ(s) =
∏
p

(
1 +

1

ps
+

1

p2s
+ · · ·+ 1

pks
+ . . .

)
=
∏
p

(
1

1− p−s

)
,

on summing the Geometric Progression (GP). Hence also

1

ζ(s)
=
∏
p

(
1− p−s

)
=
∞∑
n=1

µ(n)

ns
= Dµ(s),

on expanding out the product.
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Proposition 21.2. We have(∑
k

ak
ks

)
·

(∑
`

b`
`s

)
=

(∑
n

cn
ns

)
,

where cn =
∑

k|n akbn/k.

Proof. On multiplying out the LHS, a typical term is

ak
ks
· b`
`s

=
akbn/k
ns

,

where k` = n. So all pairs k, ` with k` = n contribute to the numerator of the term with
denominator ns.

Corollary 21.3. We have DF (s) = Df (s)ζ(s).

Proof. Apply the Proposition with ak = f(k) and b` = 1.

Corollary 21.4 ( Möbius inversion again). We have f(n) =
∑

d|n µ(n/d)F (d) for all n ∈ N.

Proof. From Corollary 21.3 we have

Df (s) = DF (s) · 1

ζ(s)
=

(∑
k

F (k)

ks

)
·

(∑
`

µ(`)

`s

)
=

(∑
n

cn
ns

)
,

where cn =
∑

k|n F (k)µ(n/k). But Df (s) =
∑∞

n=1
f(n)
ns , so, on comparing coefficients, f(n) =∑

k|n F (k)µ(n/k).

We now compute the Dirichlet series for a few standard functions. [Part (a) is already
proved above.]

Proposition 21.5. We have

(a) Dµ(s) = 1
ζ(s)

;

(b) Dϕ(s) = ζ(s−1)
ζ(s)

;

(c) Dτ (s) = ζ(s)2;

(d) Dσ(s) = ζ(s− 1)ζ(s).
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Proof. (b) Now

Dϕ(s) =
∏
p

(
1 +

ϕ(p)

ps
+
ϕ(p2)

p2s
+ · · ·+ ϕ(pk)

pks
+ . . .

)
=
∏
p

(
1 +

p− 1

ps
+
p2 − p
p2s

+ · · ·+ pk − pk−1

pks
+ . . .

)
=
∏
p

(
1 +

p− 1

ps
· 1

1− p1−s

)
, on summing the GP

=
∏
p

(
1− p−s

1− p−(s−1)

)
, on simplification

=
ζ(s− 1)

ζ(s)
.

(c) Now

Dτ (s) =
∏
p

(
1 +

τ(p)

ps
+
τ(p2)

p2s
+ · · ·+ τ(pk)

pks
+ . . .

)
=
∏
p

(
1 +

2

ps
+

3

p2s
+ · · ·+ k + 1

pks
+ . . .

)

=
∏
p

1

(1− p−s)2
using (1− x)−2 =

∞∑
k=0

(k + 1)xk

= ζ(s)2

(d) This can be done by the same method as (b) or (c) – a good exercise! But, given that
we know the answer, we can work backwards more quickly:

ζ(s− 1)ζ(s) =

(∑
k

k

ks

)
·

(∑
`

1

`s

)
=
∑
n

∑
k|n k · 1
ns

= Dσ(s),

using Prop. 21.2

22 Some Analytic Results about primes and the divi-

sor function

22.1 The Prime Number Theorem

How frequent are the primes? At the end of the eighteenth century, Gauss and Legendre
suggested giving up looking for a formula for the nth prime, and proposed instead estimating
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the number of primes up to x. So, define the prime-counting function π(x) by

π(x) =
∑
p6x

p prime

1.

Gauss conjectured on computational evidence that π(x) ∼ x
log x

. This was proved by inde-
pendently by Hadamard and de la Vallée Poussin in 1896, and became known as

Theorem 22.1 (The Prime Number Theorem). We have π(x) ∼ x
log x

as x→∞.

It turns out to be more convenient to work with

θ(x) =
∑
p6x

p prime

log p,

which is called Chebyshev’s θ-function. In terms of this function it can be shown (not
difficult) that the Prime Number Theorem is equivalent to the statement θ(x) ∼ x (x →
∞).

We won’t prove PNT here, but instead a weaker version, and in terms of θ(x):

Theorem 22.2. As x→∞ we have

(log 2)x+ o(x) < θ(x) < (2 log 2)x+ o(x),

so that
0.6931x+ o(x) < θ(x) < 1.3863x+ o(x).

22.2 Proof of Theorem 22.2

22.2.1 The upper bound

Proposition 22.3. We have θ(x) < (2 log 2)x+O(log2 x).

Proof. Consider
(
2n
n

)
. By the Binomial Theorem, it is less than (1 + 1)2n = 4n. Also, it is

divisible by all primes p with n < p 6 2n, so

4n >

(
2n

n

)
>

∏
n<p62n

p = eθ(2n)−θ(n).

Hence θ(2n)− θ(n) 6 2n log 2.
Now if 2n 6 x < 2n+ 2 (i.e., n 6 x/2 < n+ 1) then θ(x/2) = θ(n) and

θ(x) ≤ θ(2n) + log(2n+ 1) 6 θ(2n) + log(x+ 1),

96



so that, for each x,

θ(x)− θ(x/2) 6 θ(2n) + log(x+ 1)− θ(n)

6 2n log 2 + log(x+ 1)

6 x log 2 + log(x+ 1).

So (standard telescoping argument for x, x/2, x/22, . . . , x/2k where x/2k−1 > 2, x/2k < 2,
θ(x/2k) = 0):

θ(x) =
(
θ(x)− θ

(x
2

))
+
(
θ
(x

2

)
− θ

( x
22

))
+
(
θ
( x

22

)
− θ

( x
23

))
+ . . .

(
θ
( x

2k−1

)
− θ

( x
2k

))
6 log 2

(
x+

x

2
+ · · ·+ x

2k−1

)
+ k log(x+ 1)

6 2x log 2 + blog2 xc log(x+ 1)

6 2x log 2 +O(log2 x).

22.2.2 The lower bound

To obtain an inequality in the other direction, we look at

dn = lcm(1, 2, . . . , n) = e
∑

pm6n log p.

Define
ψ(x) =

∑
pm6x
p prime

log p;

(i.e., log p to be counted m times if pm is the highest power of p that is 6 x). So dn = eψ(n).

Lemma 22.4. We have ψ(x) < θ(x) + 2x1/2 log x+O(log2 x).

Proof. Now

ψ(x) =
∑
p6x

log x+
∑
p26x

log x+
∑
p36x

log x+ . . .

= θ(x) + θ(x1/2) + θ(x1/3) + · · ·+ θ(x1/k),

where k is greatest such that x1/k > 2, i.e., k = blog2 xc

< θ(x) + log2 x θ(x
1/2)

< θ(x) + 2x1/2 log x+O(log2 x), using Prop. 22.3.
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Curious note: this k is the same one as in the proof of Prop. 22.3, though they have
apparently different definitions.

We can now prove

Proposition 22.5. We have θ(x) > x log 2 +O(x1/2 log x).

Proof. Consider the polynomial p(t) = (t(1 − t))n on the interval [0, 1]. As t(1 − t) ≤ 1
4

on
that interval (calculus!), we have

0 6 p(t) ≤ 1

4n
on [0, 1].

Writing p(t) =
∑2n

k=0 akt
k ∈ Z[t], then

1

4n
>
∫ 1

0

p(t)dt =
2n∑
k=0

ak
k + 1

=
N

d2n+1

≥ 1

d2n+1

,

for some N ∈ N, on putting the fractions over a common denominator. Hence we have
successively

d2n+1 > 4n

ψ(2n+ 1) > 2n log 2 on taking logs

θ(2n+ 1) > 2n log 2− 2 log(2n+ 1)
√

2n+ 1 by Lemma 22.4

θ(x) > x log 2 +O(x1/2 log x).

Combining Propositions 22.3 and 22.5, we certainly obtain Theorem 22.2.

22.3 Some standard estimates

Lemma 22.6. For t > −1 we have log(1 + t) 6 t, with equality iff t = 0.
For n ∈ N we have n log(1 + 1

n
) < 1.

Proof. The first inequality comes from observing that the tangent y = t to the graph of
y = log(1 + t) at t = 0 lies above the graph, touching it only at t = 0. The second inequality
comes from putting t = 1/n in the first inequality.

Lemma 22.7 (Weak Stirling Formula). For n ∈ N we have

n log n− n < log(n!) 6 n log n.

Proof. Now for j > 2 we have

log j = j log j − (j − 1) log(j − 1)− (j − 1) log

(
1 +

1

j − 1

)
= j log j − (j − 1) log(j − 1)− δj,
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where 0 < δj < 1, using Lemma 22.6 for n = j − 1. So, on summing for j = 2, . . . , n we get

log(n!) =
n∑
j=2

log j

=
n∑
j=2

j log j − (j − 1) log(j − 1)− δj

= n log n−
n∑
j=2

δj

= n log n−∆,

where 0 < ∆ < n, since 1 log 1 = 0 and all the other j log j terms apart from n log n
telescope.

Proposition 22.8. We have ∑
n6x

1

n
= log x+ γ +O

(
1

x

)
,

where γ = 0.577 . . . , the Euler-Mascheroni constant.

Proof. Draw the graph of y = 1/t for t from 0+ to N + 1, where N = bxc. On each
interval [n, n+ 1] draw a rectangle of height 1/n, so that these rectangles for n = 1, 2, . . . , N
completely cover the area under the curve from t = 1 to t = N + 1. The pie-shaped pieces
of the rectangles above the curve, when moved to the left to lie above the interval [0, 1], are
non-intersecting, and more than half-fill the 1 × 1 square on that interval. Say their total
area is γn. Then, as n→∞, γn clearly tends to a limit γ, the Euler-Mascheroni constant.

The sum of the areas of the rectangles above [n, n + 1] for n = 1, 2, . . . , N is clearly∑N
n=1 1/n (the total area of the parts of the rectangles below the curve). On the other hand,

it is
∫ N+1

1
dx
x

= log(N + 1) (the total area of the parts of the rectangles below the curve),
plus γn (the total area of the parts of the rectangles above the curve). Hence

∑
n6x

1

n
=

N∑
n=1

1/n = log(N + 1) + γn.

Since log(N + 1)− log x = O
(
1
x

)
and γ − γn = O

(
1
x

)
(check!), we have the result.

22.4 More estimates of sums of functions over primes

Let us put Px =
∏

p6x
1

1−p−1 . Then

Proposition 22.9. We have Px > log x.
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Proof. We have

Px =
∏
p6x

(
1 +

1

p
+

1

p2
+ · · ·+ 1

pn
+ . . .

)
.

On multiplying these series together, we obtain a sum of terms that includes all fractions 1
n
,

where n 6 x. This is simply because all prime factors of such n are at most x. Hence

Px >
∑
n6x

1

n
> log x,

by Prop. 22.8.

Corollary 22.10. There are infinitely many primes.

Proposition 22.11. We have ∑
p6x

1

p
> log log x− 1.

Proof. We have

logPx =
∑
p6x

log

(
1 +

1

p
+

1

p2
+

1

p3
+ · · ·+ 1

pk
+ . . .

)
<
∑
p6x

1

p
+
∑
p6x

1

p(p− 1)
,

on applying Lemma 22.6 with t = 1
p

+ 1
p2

+ 1
p3

+ · · ·+ 1
pk

+ . . . , and summing the GP, starting

with the 1/p2 term,

<
∑
p6x

1

p
+
∞∑
n=1

1

(n+ 1)n

=
∑
p6x

1

p
+
∞∑
n=1

(
1

n
− 1

n+ 1

)
=
∑
p6x

1

p
+ 1,

because of the telescoping of
∑∞

n=1

(
1
n
− 1

n+1

)
. Hence

∑
p6x

1

p
> logPx − 1 > log log x− 1,

using Prop. 22.9.

100



Proposition 22.12. We have∑
p6x

log p

p
= log x+O(1) as x→∞.

Proof. Now from Problem Sheet 1, Q8, we have

n! =
∏
p6n

pb
n
pc+

⌊
n
p2

⌋
+...
,

so that (taking logs)

log(n!) =
∑
p6n

(⌊
n

p

⌋
+

⌊
n

p2

⌋
+

⌊
n

p3

⌋
+ . . .

)
log p

=
∑
p6n

⌊
n

p

⌋
log p+ Sn,

where

Sn : =
∑
p6n

(⌊
n

p2

⌋
+

⌊
n

p3

⌋
+ . . .

)
log p

≤
∑
p6n

(
n

p2
+
n

p3
+ . . .

)
log p

= n
∑
p6n

log p

p(p− 1)

< n
∞∑
k=1

log(k + 1)

(k + 1)k

= nc,

for some positive constant c, since the last sum is convergent. Hence nc > Sn > 0. Also, for
n = bxc we have

n
∑
p6x

log p

p
≥
∑
p6x

⌊
n

p

⌋
log p

>
∑
p6x

(
n

p
− 1

)
log p

= n
∑
p6x

log p

p
− θ(x).
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Hence

n
∑
p6x

log p

p
>
∑
p6x

⌊
n

p

⌋
log p > n

∑
p6x

log p

p
−O(x),

since θ(x) = O(x), by Theorem 22.2. Now add the inequality nc > Sn > 0 to the above
inequality, to obtain

n
∑
p6x

log p

p
+ nc > log(n!) > n

∑
p6x

log p

p
−O(x).

Dividing by n, and using the fact that log(n!)
n

= log n−O(1) from Prop. 22.7, we have∑
p6x

log p

p
+O (1) > log n−O (1) >

∑
p6x

log p

p
−O (1) .

Hence ∑
p6x

log p

p
= log x+O(1).

22.5 The average size of the divisor function τ(n)

The following result is a way of saying that an integer n has log n + 2γ − 1 divisors, on
average. Recall that τ(n) is the number of (positive) divisors of n.

Proposition 22.13. We have, as x→∞, that∑
n6x

τ(n) = x log x+ (2γ − 1)x+O
(√

x
)
.

Proof. Now∑
n6x

τ(n) =
∑
n6x

∑
`|n

1

=
∑
`6x

∑
n=k`
k≤x

`

1

=
∑
`6x

⌊x
`

⌋
,
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on recalling that byc is the number of positive integers 6 y,

= 2
∑
`6
√
x

⌊x
`

⌋
−
⌊√

x
⌋2

by Q10, Problem Sheet 1

= 2
∑
`6
√
x

x

`
− x+O(

√
x)

= 2x

(
log
√
x+ γ +O

(
1√
x

))
− x+O(

√
x) using Prop. 22.8

= x log x+ (2γ − 1)x+O(
√
x).

23 p-adic numbers

23.1 Motivation: Solving x2 ≡ a mod pn

Take an odd prime p, and an integer a coprime to p. Then, as we know, x2 ≡ a mod p has a

solution x ∈ Z iff

(
a

p

)
= 1. In this case we can suppose that b20 ≡ a mod p. We claim that

then x2 ≡ a mod pn has a solution x for all n ∈ N.
Assume that we have a solution x of x2 ≡ a mod pn for some n > 1. Then x is coprime

to p, so that we can find x1 ≡ 1
2
(x+ a/x) mod p2n. (This is the standard Newton-Raphson

iterative method x1 = x − f(x)/f ′(x) for solving f(x) = 0, applied to the polynomial
f(x) = x2 − a, but modp2n instead of in R or C.) Then

x1 − x = −1

2

(
x− a

x

)
= − 1

2x

(
x2 − a

)
≡ 0 mod pn,

and

x21 − a =
1

4

(
x2 + 2a+

a2

x2

)
− a

=
1

4

(
x− a

x

)2
=

1

4x2
(x2 − a)2

≡ 0 mod p2n

Thus, starting with x0 such that x20 ≡ a mod p2
0
, we get successively x1 with x21 ≡ a mod p2

1
,

x2 with x22 ≡ a mod p2
2
,. . . , xk with x2k ≡ a mod p2

k
,. . . , with xk+1 ≡ xk mod p2

k
. So, writing
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the xi in base p, we obtain

x0 = b0

x1 = b0 + b1p say, specified mod p2

x2 = b0 + b1p+ b2p
2 + b3p

3 say, specified mod p4

x3 = b0 + b1p+ b2p
2 + b3p

3 + b4p
4 + b5p

5 + b6p
6 + b7p

7 say, specified mod p8,

and so on.
So, in any sense, is x∞ =

∑∞
i=1 bip

i a root of x2 ≡ a mod p∞? It turns out that, yes, it
is: x∞ is a root of x2 = a in the field Qp of p-adic numbers.

23.2 Valuations

In order to define the fields Qp of p-adic numbers for primes p, we first need to discuss
valuations.

A valuation | · | on a field F is a map from F to the nonnegative real numbers satisfying

For each x ∈ F |x| = 0 iff x = 0; (ZERo)

For each x, y ∈ F |xy| = |x| · |y|; (HOMomorphism)

For each x, y ∈ F |x+ y| 6 |x|+ |y|. (TRIangle)

If in addition

For each x, y ∈ F |x+ y| 6 max(|x|, |y|), (MAXimum)

then | · | is called a nonarchimedean valuation. A valuation that is not nonarchimedean,
i.e., for which there exist x, y ∈ F such that |x+ y| > max(|x|, |y|), is called archimedean.
For instance the standard absolute value on R is archimedean because 2 = |2| = |1 + 1| >
max(|1|, |1|) = 1.

Note that MAX is stronger than TRI in the sense that if MAX is true than TRI is
certainly true. So to show that a valuation is nonarchimedean we only need to check that
ZER, HOM and MAX hold.

Proposition 23.1. For any valuation | · | on a field F we have |1| = |−1| = 1 and for n ∈ N
(defined as the sum of n copies of the identity of F ) we have | − n| = |n| and |1/n| = 1/|n|.
Further, for n,m ∈ N we have |n/m| = |n|/|m|.

Proof. We have |1| = |12| = |1|2, using HOM, so that |1| = 0 or 1. But |1| 6= 0 by ZER, so
|1| = 1.

Also 1 = |1| = |(−1)2| = | − 1|2 by HOM, so that | − 1| = 1 since | − 1| > 0.
Further, | − n| = |(−1)n| = | − 1| · |n| = 1 · |n| = |n|, and from n · (1/n) = 1 we get

|n| · |1/n| = |1| = 1, so that |1/n| = 1/|n|.
Finally, from n/m = n · (1/m) we get |n/m| = |n| · |1/m| = |n|/|m|.
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23.3 Nonarchimedean valuations

From now on we restrict our attention to nonarchimedean valuations.

Proposition 23.2 (Principle of Domination). Suppose that we have a nonarchimedean val-
uation | · | on a field F , and that x, y ∈ F with |x| 6= |y|. Then

|x+ y| = max(|x|, |y|).

Note the equal sign in this statement!

Proof. Put s = x+ y, and assume w.l.g. that |x| < |y|. Then |s| ≤ max(|x|, |y|) = |y|, while

|y| = |s− x| ≤ max(|s|, | − x|) = max(|s|, |x|) = |s|,

since otherwise we’d have |y| ≤ |x|. Hence |s| = |y| = max(|x|, |y|).

Corollary 23.3. Suppose that x1, . . . , xn ∈ F , with | · | nonarchimedean. Then

|x1 + . . . ,+xn| ≤ max(|x1|, . . . , |xn|),

with equality if |x1| > max(|x2, . . . , |xn|).

Proof. Use induction, with the help of MAX, for the inequality. For the equality, put x1 = y
and x2 + · · ·+ xn = x in the Principle of Domination.

Corollary 23.4. For | · | nonarchimedean and n ∈ Z we have |n| 6 1.

Proof. Apply the Corollary above with all xi = 1. Then use | − n| = |n|.

Lemma 23.5. If | · | is a nonarchimedean valuation on F , then so is | · |α for any α > 0.

Proof. It’s easily checked that ZER, HOM and MAX still hold when the valuation we start
with is taken to the α-th power.

[ The same does not apply to TRI – we need 0 < α 6 1 for TRI to still always hold.]

23.4 Nonarchimedean valuations on Q
Corollary 23.6. If | · | is a nonarchimedean valuation on Q with |n| = 1 for all n ∈ N then
| · | is trivial, i.e., |x| = 0 if x = 0 while |x| = 1 if x 6= 0.

Proof. We then have |x| = 0 by ZER, while |n/m| = |n|/|m| = 1/1 = 1.

We’ll ignore trivial valuations from now on.

Proposition 23.7. If | · | is a nonarchimedean valuation on Q with |n| < 1 for some n ∈ N,
then there is a prime p such that {n ∈ N : |n| < 1} = {n ∈ N : p divides n}.
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Proof. Take the smallest positive integer n1 such that |n1| < 1. We know that n1 > 1. If n1

is composite, say n1 = n2n3 with 1 < n2, n3 < n1, then, by the minimality of n1, we have
|n2| = |n3| = 1, so that |n1| = |n2| · |n3| = 1 · 1 = 1 by HOM, a contradiction. Hence n1 is
prime, = p say.

Then for any n with |n| < 1 we can, by the division algorithm, write n = qp + r where
0 6 r < p. But then |r| = |n − qp| ≤ max(|n|, | − qp|) = max(|n|, | − 1| · |q| · |p|) < 1, as
| − 1| = 1, |q| 6 1 and |p| < 1. By the minimality of p we must have r = 0, so that p | n.

Next, we show that there is indeed a valuation on Q corresponding to each prime p. We
define | · |p by |0| = 0, |p|p = 1/p and |n| = 1 for n ∈ Z and coprime to p, and |pkn/m|p = p−k

for n and m coprime to p. We call this the p-adic valuation on Q.

Proposition 23.8. The p-adic valuation on Q is indeed a valuation.

Proof. The definition of | · |p ensures that ZER and HOM hold. It remains only to check
that MAX holds.

Let x = pkn/m and y = pk
′
n′/m′,where n,m, n′m′ are all coprime to p. Suppose w.l.g.

that k 6 k′. Then |x|p = |pk|p · |n|p/|m|p = p−k as |n|p = |m|p = 1 and |p|p = 1/p. Similarly
|y|p = p−k

′ ≤ |x|p. Hence

|x+ y|p =

∣∣∣∣pk(nm′ + pk
′−kn′m)

mm′

∣∣∣∣
p

=
p−k|nm′ + pk

′−kn′m|p
|mm′|p

6 p−k = max(|x|p, |y|p).

as |m|p = |m′|p = 1 and |nm′ + pk
′−kn′m|p 6 1, since nm′ + pk

′−kn′m ∈ Z.

[Note that the choice of |p|p = 1/p is not particularly important, as by replacing | · |p by
its α-th power as in Lemma 23.5 we can make |p|p equal any number we like in the interval
(0, 1). But we do need to fix on a definite value!]

23.5 The p-adic completion Qp of Q
We first recall how to construct the real field R from Q, using Cauchy sequences. Take
the ordinary absolute value | · | on Q, and define a Cauchy sequence to be a sequence
(an) = a1, a2, . . . , an, . . . of rational numbers with the property that for each ε > 0 there is
an N > 0 such that |an − an′ | < ε for all n, n′ > N . We define an equivalence relation on
these Cauchy sequences by saying that two such sequences (an) and (bn) are equivalent if
the interlaced sequence a1, b1, a2, b2, . . . , an, bn, . . . is also a Cauchy sequence. [Essentially,
this means that the sequences tend to the same limit, but as we haven’t yet constructed R,
where (in general) the limit lies, we can’t say that.] Having checked that this is indeed an
equivalence relation on these Cauchy sequences, we define R to be the set of all equivalence
classes of such Cauchy sequences. We represent each equivalence class by a convenient
equivalence class representative; one way to do this is by the standard decimal expansion. So,
the class π will be represented by the Cauchy sequence 3, 3.1, 3.14, 3.141, 3.1415, 3.14159, . . . ,
which we write as 3.14159 . . . . Further, we can make R into a field by defining the sum and
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product of two Cauchy sequences in the obvious way, and also the reciprocal of a sequence,
provided the sequence doesn’t tend to 0.

[The general unique decimal representation of a real number a is

a = ±10k(d0 + d110−1 + d210−2 + · · ·+ dn10−n + . . . ),

where k ∈ Z, and the digits di are in {0, 1, 2, . . . , 9}, with d0 6= 0. Also, it is forbidden that
the di’s are all = 9 from some point on, as otherwise we get non-unique representations, e.g.,
1 = 100(1.00000 . . . ) = 10−1(9.99999 . . . ).]

We do the same kind of construction to define the p-adic completion Qp of Q, except
that we replace the ordinary absolute value by | · |p in the method to obtain p-Cauchy
sequences. To see what we should take as the equivalence class representatives, we need
the following result.

Lemma 23.9. Any rational number m/n with |m/n|p = 1 can be p-adically approximated
arbitrarily closely by a positive integer. That is, for any k ∈ N there is an N ∈ N such that
|m/n−N |p 6 p−k.

Proof. We can assume that |n|p = 1 and |m|p 6 1. We simply take N = mn′, where
nn′ ≡ 1 mod pk. Then the numerator of m/n−N is an integer that is divisible by pk.

An immediate consequence of this result is that any rational number (i.e., dropping
the |m/n|p = 1 condition) can be approximated arbitrarily closely by a positive integer
times a power of p. Thus one can show that any p-Cauchy sequence is equivalent to one
containing only those kind of numbers. We write the positive integer N in base p, so that
pkN = pk(a0+a1p+a2p

2+ · · ·+arp
r) say, where the ai are base-p digits ∈ {0, 1, 2, . . . , p−1},

and where we can clearly assume that a0 6= 0 (as otherwise we could increase k by 1). We
define Qp, the p-adic numbers, to be the set of all equivalence classes of p-Cauchy sequences
of elements of Q. Then we have the following.

Theorem 23.10. Every nonzero element (i.e., equivalence class) in Qp has an equivalence
class representative of the form

pka0, p
k(a0 + a1p), p

k(a0 + a1p+ a2p
2), . . . , pk(a0 + a1p+ a2p

2 + · · ·+ aip
i), . . . ,

which we write simply as

pk(a0 + a1p+ a2p
2 + · · ·+ aip

i + . . . ) [= pk(
∞∑
i=0

aip
i)].

Here, the ai are all in ∈ {0, 1, 2, . . . , p− 1}, with a0 6= 0.

Thus we can regard p-adic numbers as these infinite sums pk(
∑∞

i=0 aip
i). We define

the unary operations of negation and reciprocal, and the binary operations of addition and
multiplication in the natural way, namely: apply the operation to the (rational) elements of
the p-Cauchy sequence representing that number, and then choose a standard equivalence
class representative (i.e., pk(

∑∞
i=0 aip

i) with all ai ∈ {0, 1, 2, . . . , p−1}, a0 6= 0) for the result.
When we do this, we have
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Theorem 23.11. With these operations, Qp is a field, the field of p-adic numbers, and
the p-adic valuation | · |p can be Extended from Q to Qp by defining |a|p = p−k when a =
pk(
∑∞

i=0 aip
i). Again, the ai are all in ∈ {0, 1, 2, . . . , p− 1}, with a0 6= 0.

We shall skip over the tedious details that need to be checked to prove these two theorems.
Note that, like R, Qp is an uncountable field of characteristic 0 (quite unlike Fp, which

is a finite field of characteristic p).
We define a p-adic integer to be an p-adic number a with |a|p 6 1, and Zp to be the

set of all p-adic integers.

Proposition 23.12. With the arithmetic operations inherited from Qp, the set Zp is a ring.

Proof. This is simply because if a and a′ ∈ Zp, then |a|p 6 1 and |a′|p 6 1, so that

|a+ a′|p ≤ max(|a|p, |a′|p) 6 1 by MAX ;

|a · a′|p = |a|p · |a′|p 6 1 by HOM ,

showing that Zp is closed under both addition and multiplication, and so is a ring.

An p-adic number a is called a p-adic unit if |a|p = 1. Then k = 0 so that a =
∑∞

i=0 aip
i

with all ai ∈ {0, 1, 2, . . . , p − 1} and a0 6= 0. The set of all p-adic units is a multiplicative
subgroup of the multiplicative group Q×p = Qp \ {0}. This is because if |a|p = 1 then
|1/a|p = 1/|a|p = 1, so that 1/a is also a unit.

23.6 Calculating in Qp

23.6.1 Negation

If a = pk(
∑∞

i=0 aip
i), then

−a = pk

(
(p− a0) +

∞∑
i=1

(p− 1− ai)pi
)
,

as can be checked by adding a to −a (and getting 0!). Note that from all ai ∈ {0, 1, 2, . . . , p−
1} and a0 6= 0 we have that the same applies to the digits of −a.

23.6.2 Reciprocals

If a = pk(
∑∞

i=0 aip
i), then

1

a
= p−k(a′0 + a′1p+ · · ·+ a′ip

i + . . . )

say, where for any i the first i digits a′0, a
′
1, . . . , a

′
i can be calculated as follows: Putting

a0 + a1p + · · · + aip
i = N , calculate N ′ ∈ N with N ′ < pi+1 such that NN ′ ≡ 1 mod pi+1.

Then writing N ′ in base p as N ′ = a′0 + a′1p+ · · ·+ a′ip
i gives a′0, a

′
1, . . . , a

′
i.
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23.6.3 Addition and multiplication

If a = pk(
∑∞

i=0 aip
i) and a′ = pk(

∑∞
i=0 a

′
ip
i) (same k) then a+a′ = pk((a0 +a′0)+(a1 +a′1)p+

· · ·+ (ai+a′i)p
i+ . . . ), where then ‘carrying’ needs to be performed to get the digits of a+a′

into {0, 1, 2, . . . , p − 1}. If a′ = pk
′
(
∑∞

i=0 a
′
ip
i) with k′ < k then we can pad the expansion

of a′ with initial zeros so that we can again assume that k′ = k, at the expense of no longer
having a′0 nonzero. Then addition can be done as above.

Multiplication is similar: multiplying a = pk(
∑∞

i=0 aip
i) by a′ = pk

′
(
∑∞

i=0 a
′
ip
i) gives

a · a′ = pk+k
′
(a0a

′
0 + (a1a

′
0 + a0a

′
1)p+ · · ·+ (

i∑
j=0

aja
′
i−j)p

i + . . . ),

where then this expression can be put into standard form by carrying.

23.7 Expressing rationals as p-adic numbers

Any nonzero rational can clearly be written as ±pkm/n, where m,n are positive integers
coprime to p (and to each other), and k ∈ Z. It’s clearly enough to express ±m/n as a p-adic
number a0 + a1p+ . . . , as then ±pkm/n = pk(a0 + a1p+ . . . ).

23.7.1 Representating −m/n, where 0 < m < n

We have the following result.

Proposition 23.13. Put e = ϕ(n). Suppose that m and n are coprime to p, with 0 < m < n,
and that the integer

m
pe − 1

n
is written as d0 + d1p+ · · ·+ de−1p

e−1

in base p. Then

−m
n

= d0 + d1p+ · · ·+ de−1p
e−1 + d0p

e + d1p
e+1 + · · ·+ de−1p

2e−1 + d0p
2e + d1p

2e+1 + . . . .

Proof. We know that pe−1
n

is an integer, by Euler’s Theorem. Hence

−m
n

=
mpe−1

n

1− pe
= (d0 + d1p+ · · ·+ de−1p

e−1)(1 + pe + p2e + . . . ),

which gives the result.

In the above proof, we needed m < n so that mpe−1
n

< pe, and so had a representation
d0 + d1p+ · · ·+ de−1p

e−1.

109



23.7.2 The case m/n, where 0 < m < n

For this case, first write −m/n = u/(1− pe), where, as above, u = m · pe−1
n
. Then

m

n
=
−u

1− pe
= 1 +

pe − 1− u
1− pe

= 1 +
u′

1− pe
,

where u′ = pe − 1− u and 0 6 u′ < pe. Thus we just have to add 1 to the repeating p-adic
integer u′ + u′pe + u′p2e + . . . .

Example What is 1/7 in Q5?
From 56 ≡ 1 mod 7 (Fermat), and (56 − 1)/7 = 2232, we have

−1

7
=

2232

1− 56

=
2 + 1 · 5 + 4 · 52 + 2 · 53 + 3 · 54

1− 56

= (21423)(1 + 56 + 512 + . . . )

= 214230 214230 214230 214230 214230 . . . .

Hence
1

7
= 330214 230214 230214 230214 230214 230214 . . . ,

which is a way of writing 3 + 3 · 51 + 0 · 52 + 2 · 53 + . . . .

23.8 Taking square roots in Qp

23.8.1 The case of p odd

First consider a p-adic unit a = a0 + a1p + a2p
2 + · · · ∈ Zp, where p is odd. Which such a

have a square root in Qp? Well, if a = b2, where b = b0 + b1p+ b2p
2 + · · · ∈ Zp, then, working

mod p we see that a0 ≡ b20 mod p, so that a0 must be a quadratic residue modp. In this
case the method in Section 23.1 will construct b. Note that if at any stage you are trying to
construct b mod n then you only need to specify a mod n, so that you can always work with
rational integers rather than with p-adic integers.

On the other hand, if a0 is a quadratic nonresidue, then a has no square root in Qp.

Example. Computing
√

6 in Q5. While the algorithm given in the introduction to
this chapter is a good way to compute square roots by computer, it is not easy to use
by hand. Here is a simple way to compute square roots digit-by-digit, by hand: Write√

6 = b0 + b1 · 51 + b2 · 52 + . . . . Then, squaring and working mod 5, we have b20 ≡ 1 mod 5,
so that b0 = 1 or 4. Take b0 = 1 (4 will give the other square root, which is minus the one
we’re computing.)
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Next, working mod 52, we have

6 ≡ (1 + b1 · 5)2 mod 52

6 ≡ 1 + 10b1 mod 52

1 ≡ 2b1 mod 5,

giving b1 = 3. Doing the same thing mod 53 we have

6 ≡ (1 + 3 · 5 + b2 · 52)2 mod 53

6 ≡ 162 + 32b2 · 52 mod 53

−250 ≡ 32b2 · 52 mod 53

0 ≡ 32b2 mod 5,

giving b2 = 0. Continuing mod 54, we get b3 = 4, so that
√

6 = 1 + 3 · 5 + 0 · 52 + 4 · 53 + . . . .

Next, consider a general p-adic number a = pk(a0 +a1p+ . . . ). If a = b2, then |a|p = |b|2p,
so that |b|p = |a|1/2p = p−k/2. But valuations of elements of Qp are integer powers of p, so
that if k is odd then b 6∈ Qp. But if k is even, there is no problem, and a will have a square
root b = pk/2(b0 + b1p+ . . . ) ∈ Qp iff a0 is a quadratic residue modp.

23.8.2 The case of p even

Consider a 2-adic unit a = 1+a12+a22
2+· · · ∈ Z2. If a = b2, where b = b0+b12

1+b22
2+· · · ∈

Z2, working mod 8, we have b2 ≡ 1 mod 8, so that we must have a ≡ 1 mod 8, giving
a1 = a2 = 0. When this holds, the construction of Section 23.1 will again construct b. On
the other hand, if a 6≡ 1 mod 8, then a has no square root in Q2.

For a general 2-adic number a = 2k(1 + a12 + a22
2 + . . . ), we see that, similarly to the

case of p odd, a will have a square root in Q2 iff k is even and a1 = a2 = 0.

23.9 The Local-Global Principle

The fields Qp (p prime) and R, and their finite extensions, are examples of local fields.
These are complete fields, because they contain all their limit points. On the other hand,
Q and its finite extensions are called number fields and are examples of global fields.
[Other examples of global and local fields are the fields F(x) of rational functions over a
finite field F (global) and their completions with respect to the valuations on them (local).]
One associates to a global field the local fields obtained by taking the completions of the
field with respect to each valuation on that field.

Suppose that you are interested in whether an equation f(x, y) = 0 has a solution x, y in
rational numbers. Clearly, if the equation has no solution in R, or in some Qp, then, since
these fields contain Q, the equation has no solution on Q either.

For example, the equation x2 + y2 = −1 has no solution in Q because it has no solution
in R. The equation x2 + 3y2 = 2 has no solution in Q because it has no solution in Q3,
because 2 is a quadratic nonresidue of 3.
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The Local-Global (or Hasse-Minkowski) Principle is said to hold for a class of equations
(over Q, say) if, whenever an equation in that class has a solution in each of its completions,
it has a solution in Q. This principle holds, in particular, for quadratic forms. Thus for such
forms in three variables, we have the following result.

Theorem 23.14. Let a, b, c be nonzero integers, squarefree, pairwise coprime and not all of
the same sign. Then the equation

ax2 + by2 + cz2 = 0 (22)

has a nonzero solution (x, y, z) ∈ Z3 iff
−bc is a quadratic residue of a; i.e. the equation x2 ≡ −bc mod a has a solution x;
−ca is a quadratic residue of b;
−ab is a quadratic residue of c.

(Won’t prove.) The first of these conditions is necessary and sufficient for (22) to have
a solution in Qp for each odd prime dividing a. Similarly for the other two conditions. The
condition that a, b, c are not all of the same sign is clearly necessary and sufficent that (22)
has a solution in R. But what about a condition for a solution in Q2?

23.9.1 Hilbert symbols

It turns out that we don’t need to consider solutions in Q2, because if a quadratic form has
no solution in Q then it has no solution in a positive, even number (so, at least 2!) of its
completions. Hence, if we’ve checked that it has a solution in all its completions except one,
it must in fact have a solution in all its completions, and so have a solution in Q. This is
best illustrated by using Hilbert symbols and Hilbert’s Reciprocity Law.

For a, b ∈ Q the Hilbert symbol (a, b)p, where p is a prime or∞, and Q∞ = R, is defined
by

(a, b)p =

{
1 if ax2 + by2 = z2 has a nonzero solution in Qp;

−1 otherwise.

Hilbert’s Reciprocity Law says that
∏

p(a, b)p = 1 . (Won’t prove; it is, however, essentially
equivalent to the Law of Quadratic Reciprocity.) Hence, a finite, even number of (a, b)p (p a
prime or ∞) are equal to −1.

23.10 Nonisomorphism of Qp and Qq

When one writes rational numbers to any (integer) base b > 2, and then forms the completion
with respect to the usual absolute value | · |, one obtains the real numbers R, (though maybe
written in base b). Thus the field obtained (R) is independent of b. Furthermore, b needn’t
be prime.

However, when completing Q (in whatever base) with respect to the p-adic valuation
to obtain Qp, the field obtained does depend on p, as one might expect, since a different
valuation is being used for each p. One can, however, prove this directly:
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Theorem 23.15. Take p and q to be two distinct primes. Then Qp and Qq are not isomor-
phic.

Proof. We can assume that p is odd. Suppose first that q is also odd. Let n be a quadratic
nonresidue modq. Then using the Chinese Remainder Theorem we can find k, ` ∈ N with

1 + kp = n+ `q. Hence, for a = 1 + kp we have

(
a

p

)
=

(
1

p

)
= 1 while

(
a

q

)
=

(
n

q

)
= −1.

Hence, by the results of Subsection 23.8 we see that
√
a ∈ Qp but

√
a 6∈ Qq. Thus, if there

were an isomorphism φ : Qp → Qq then we’d have

φ(
√
a)2 = φ(

√
a
2
) = φ(a) = φ(1 + 1 + · · ·+ 1) = a,

so that φ(
√
a) would be a square root of a in Qq, a contradiction.

Similarly, if q = 2 then we can find a = 1 + kp = 3 + 4`, so that
√
a ∈ Qp again, but√

a 6∈ Q2. so the same argument applies.

23.11 The b-adic numbers

Note that for any integer b > 2 one can, in fact, define the ring of b-adic numbers, which
consists of numbers pk(a0+a1b+a2b

2+· · ·+aibi+. . . ), where k ∈ Z and all ai ∈ {0, 1, 2, . . . , b−
1}. However, if b is composite, this ring has nonzero zero divisors (nonzero numbers a, a′

such that aa′ = 0), so is not a field — in fact not even an integer domain. The following
exercise proves this for b = 6.

Exercise. Define the ring of 6-adic numbers as for the p-adic numbers but with 6
replacing p. Show that the 6-adic numbers are not a field by finding a 6-adic number
α 6= 0,−1 satisfying α(α + 1) = 0.

[Suggestion: put α = 2 + a1 · 6 + a2 · 62 + a3 · 63 + · · · , and solve α(α+ 1) = 0 mod 6k for
k = 2, 3, . . . to obtain a1, a2, a3, . . . and hence α.]
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