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1 Basic Preliminaries

These notes serve as a basic introduction to many of the topics in elementary
algebraic geometry. This section starts out rather informally, defining many of
the crucial objects in terms of polynomial rings and certain special subsets. We
will see however, that hardly anything is lost when we pass to the general case of
commutative rings in the next section. The reader should recall the notion of a
polynomial ring from high school, even if it was not given by that name. All the
naive rules concerning addition, subtraction and multiplication of polynomials
applies in these notes as it did in high school. The interested reader can of
course state these definitions formally.

Definition 1. The polynomial ring R[x1, . . . , xn] is the set of all polynomials
in the n variables x1, . . . , xn.

The reason we call this set a ring will be clear in the next section when we
define abstract rings, but for the moment it will be helpful to keep in mind that
in this set we can do the following:

• add, subtract and multiply polynomials

• the results of these operations are again polynomials

• addition and multiplication satisfy distributive laws

It is important to note that in general we cannot divide two polynomials and
get another polynomial. Later, when talking about rings, we will define what it
means to be a unit and how it is related to dividing elements in a ring, but for
now, try this homework problem:

Homework 1. Let f, g be polynomials in R[x1, . . . , xn]. Under what conditions
is f/g a polynomial? For which g is f/g a polynomial for all polynomials f?
To do this problem it might help to first consider polynomials in one variable
(i.e. let n = 1).

Polynomial rings are very algebraic objects. This shouldn’t come as a sur-
prise since you most likely first heard about them during a high school algebra
class. A common theme in Algebraic Geometry is the interplay between algebra
and geometry. We now introduce the geometric counterpart of R[x1, . . . , xn].
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Definition 2. Affine n-space An
R = {(a1, . . . , an) : ai ∈ R} = Rn

You’ll notice in our definition of An
R we have put a small R in the subscript.

This is because we are using the real numbers as the field we are working over.
For example, if we were using the complex numbers, then we could easily have
said

An
C = Cn.

If the underlying field is understood, (or not important), we may omit the
subscript and just write An. These are mainly technicalities and shouldn’t be
worried about much. The key is that affine space is just the standard
vector space everyone is used to. It’s perfectly fine to think of it as Rn.

We now begin to discuss the relationship between R[x1, . . . , xn] and An
R.

Suppose we have a polynomial, f ∈ R[x1, . . . , xn]. We define the set

V (f) = {(a1, . . . , an) ∈ An
R : f(a1, . . . , an) = 0}

This is called the variety of f . It is maybe more helpful to think that the V
stands for vanishing, however. Indeed, V (f) is the set of all points in affine
space where f vanishes.

Example: Let us work in R[x, y]. Let f(x,y) = x2 + y2 − 1. What is V (f)?

x
x

yy

L1

L2

x2 + y2 = 1

Answer: V (f) is the set of all points in R2 such that x2 + y2 − 1 = 0. This
is easily seen to be the unit circle. Writing it as a set,

V (f) =
{
(x, y) ∈ R2 : x2 + y2 = 1

}
Example: Staying in R[x, y]. Let f(x,y) = xy + y2 − y − x = (x + y)(y − 1).

What is V (f)?
Answer: V (f) is the set of all points in R2 such that (x + y)(y − 1) = 0.

This is the set of all points with x = −y and the set of points with y = 1. These
are the two lines L1 and L2 in the figure. We could write the variety as

V (f) =
{
(x, y) ∈ R2 : x = −y or y = 1

}
= L1 ∪ L2.
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Homework 2. What is the difference between these two examples? First con-
sider geometric properties of the varieties. Are there multiple parts? How do
these parts correspond to the polynomial? What do the specific components cor-
respond to?

Homework 3. In the second example above, every point on the variety is a point
where f vanishes. What is special about the point (−1,−1) on the variety? In
terms of the polynomial?

1.1 The other direction:

We just exhibited how any polynomial in R[x1, . . . , xn] gives rise to a variety in
An

R. Now let us formulate the question in reverse. Given a subset X of An
R. Can

we get a polynomial? The answer is yes, in fact we get a whole family of them!

Definition 3. Let X be a subset of An
R. We define the subset I(X) in R[x1, . . . , xn]

to be the set of all polynomials in R[x1, . . . , xn] that vanish at each point of X.
In other words,

I(X) = {f ∈ R[x1, . . . , xn] : f(a1, . . . , an) = 0, for each (a1, . . . , an) ∈ X}

This set has several important properties. We outline them below and will
come back to the next section when we discuss ideals.

1. 0 ∈ I(X)

2. If f, g ∈ I(X) then so is f + g.

3. If f ∈ I(x) and h ∈ R[x1, . . . , xn] is any polynomial, then fh ∈ I(x).

The verification of these three is straightforward, and is left to the reader, but
we prove 3, to show the idea.

Proof. Suppose that f and h are as above. Then since f(a) = 0 for every a ∈ X,
(fh)(a) = f(a)h(a) = 0h(a) = 0 for every a ∈ X. Thus fh ∈ I(X).

Homework 4. Prove parts 1 and 2 above. (Note that there is little to prove for
part 1, but it will help reinforce the ideas to convince yourself that 0 ∈ I(X)).

Homework 5. Find a subset of R[x1, . . . , xn] that satisfies property 2 above,
but not property 3. Also, find a subset that satisfies property 3 but not property
2.

We will call any subset of R[x1, . . . , xn] that satisfies the above three prop-
erties a polynomial ideal (or just an ideal).

Examples:

• The set {0} is an ideal.

• The set (f) of all multiples of f is an ideal. This is the set

(f) = {f(x)g(x) : g ∈ R[x1, . . . , xn]}

3



• The set (f, g) = {f(x)h(x) + g(x)k(x) : h, k ∈ R[x1, . . . , xn]} is an ideal.

• In general we write

(f1, . . . , fn) = {f1h1 + . . . + fnhn : hi ∈ R[x1, . . . , xn]}

Proof. We will prove that (f) is an ideal. Clearly, 0 ∈ (f) since 0 = 0f . Let
g, h ∈ (f) Then g = fa, h = fb for some polynomials a, b, so

g + h = fa + fb = f(a + b) ∈ (f).

Finally, let g ∈ (f) and h be any polynomial. Then by definition g = fa for
some a. Thus

gh = fah = f(ah) ∈ (f).

Homework 6. Let f1, . . . , fn be polynomials in R[x1, . . . , xn]. Prove that (f1, . . . , fn)
as defined above is an ideal.

Proposition 1. Let f1, . . . , fn be polynomials in R[x1, . . . , xn]. Then (f1, . . . , fn)
is the smallest ideal containing f1, . . . , fn.

Proof. Let I be any ideal containing f1, . . . , fn. We will show that (f1, . . . , fn) ⊆
I. Since I contains fi and is an ideal, it must contain fih for every polynomial
h ∈ R[x1, . . . , xn]. Since it is closed under addition as well, it must contain all
sums of these guys as well, thus it contains (f1, . . . , fn).

The previous proof used the fact that (f1, . . . , fn) is the set of all “combi-
nations” of the fi. In fact, it is safe to think about this as a sort of generalized
linear combination. The difference from linear algebra is that here we are al-
lowed to multiply by any elements of R[x1, . . . , xn] so the “coefficients” of the
fi aren’t restricted to just constants, but can be polynomials as well.

We now relate the notion of an ideal to the relationship between polynomials
and varieties. This is best illustrated in the following proposition:

Proposition 2. Suppose we define V (f1, f2) = {a ∈ An
R : f1(a) = 0, f2(a) = 0} .

Then this set is the same as {a ∈ An
R : f(a) = 0 for each f ∈ (f1, f2)} .

Remark: The point of this is that if f1, f2 vanish at a particular point, then
so does every element in the ideal that they generate. So from now on, when
we write V (f) there is no fear of confusion because whether we mean the set of
points in An

R where f vanishes, or the set of points where every polynomial in
the ideal (f) vanishes we get the same set.

Proof. Let a be a point of the first type. That is, f1(a) = f2(a) = 0. Then
clearly, all combinations gf1 + hf2 have g(a)f1(a) + h(a)f2(a) = 0 + 0 = 0.
Conversely, if f(a) = 0 for all f ∈ (f1, f2) then certainly f1(a) = f2(a) = 0.
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x2 + y2 = 1

Example: Let f(x, y) = x2 + y2 − 1, g(x, y) = x. Then

V (f, g) = {a ∈ An
R : f(a) = 0 , g(a) = 0} .

Unraveling this condition is the same as saying:

V (f, g) =
{
(x, y) ∈ An

R : x2 + y2 = 1 , x = 0
}

.

It is then easy to see that V (f, g) = {(0, 1), (0,−1)}. This solution was largely
algebraic so we show the corresponding idea with geometry. The varieties V (f)
and V (g) which are the unit circle and the y-axis respectively. It makes sense
that the points which vanish on both f and g must be in both of these sets.
Thus we take their intersection to obtain V (f, g). This process is illustrated in
the figure.

Example: Let f(x, y) = x2. Then V (f) is easily seen to be the y-axis. Now
let’s go backwards! Let X = V (f) be the y-axis. What is I(X)?

I(X) = {f : f(0, y) = 0 for each y} .

Clearly, if f(x, y) = x · g(x, y) then f vanishes on the y-axis and so f ∈ I(X).
We make the claim that if I(X) consists entirely of these functions. Indeed,

suppose that f ∈ I(X). Then group all terms containing x to the front and
write f as

f(x, y) = x · p(x, y) + g(y). for some p, g

Then f(0, y) = 0 is the same as saying g(y) = 0. This equation must be true for
all y, which means that g must be the 0 polynomial. Thus f = x · p as required.
Thus we have just shown that I(X) = (x), the ideal of all multiples of x. But
this implies the following conundrum:

I(V (x2)) = (x).

Shouldn’t the operations ‘I’ and ‘V ’ undo each other?

Homework 7. Prove that if g(x) = 0 for infinitely many values of x then g
is still the 0 polynomial. Does this latter statement hold true if we allow g to
depend on two variables?

5



1.2 The Relationship Between I and V

In the previous section we showed a way to switch between ideals of R[x1, . . . , xn]
and subset of An

R. Namely we defined functions

V : {ideals of R[x1, . . . , xn]} −→ {subsets of An
R}

I : {subsets of An
R} −→ {ideals of R[x1, . . . , xn]}

Unfortunately, these functions are not bijections, and are certainly not inverses
of each other. Indeed, let J be an ideal of R[x1, . . . , xn]. Then as we saw in the
previous example, in general,

I(V (J)) 6= J.

It is not hard to see that in general, if X is a subset of An
R, then

V (I(X)) 6= X.

We illustrate this in the following example.
Example: Let X = R2 − {(0, 0)}. Then if f(x) = 0 for all x ∈ X then f is

the zero polynomial, so I(X) = 0. But then

V (I(X)) = V (0) = R2.

Question 1: What conditions do we need for V and I to be inverses of each
other? When is V (I(X)) = X and I(V (J)) = J?

Answer: We find that the answers to these questions depend on the type
of sets X and the types of ideals J . We will first classify the types of sets X
because the development is slightly easier. Although V and I are not inverses
of each other, they still behave nicely in for general sets and ideals.

Proposition 3. 1) Let J ⊂ R[x1, . . . , xn] be an ideal. Then J ⊂ I(V (J)).
2) Let X ⊂ Rn. Then X ⊂ V (I(X)).

Proof. The proofs of these are very simple and just involve translating what the
definitions say about I and V . Perhaps more would be gotten out of these proofs
if the student wrote them themselves rather than reading them, as reading “by
definition” doesn’t often give much insight.
1) Let f ∈ J . We’d like to show that f ∈ I(V (J)). To prove this, we’d need
to show that f(x) = 0 for all x ∈ V (J). But by definition, if x ∈ V (J), then
f(x) = 0 since f ∈ J .
2) Let x ∈ X. Then f(x) = 0 for each f in I(X) by definition. Thus x ∈
V (I(X)).

Proposition 4. (I and V reverse inclusions)
1)If I ⊂ J then V (I) ⊃ V (J)
2)If X ⊂ Y then I(X) ⊃ I(Y )

Homework 8. Prove the above proposition.
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The first part of the answer to Question 1 involves defining an algebraic set.
The following proposition shows that these sets satisfy V (I(X)) = X.

Definition 4. A set X ⊂ Rn is called an algebraic set if X = V (I) for some
ideal I of R[x1, . . . , xn].

Proposition 5. Let X be an algebraic set. Then V (I(X)) = X.

Remark: Note that if J is an ideal of R[x1, . . . , xn] then V (J) is an algebraic
set by definition. Thus, the proposition states that for all ideals J ,

V (I(V (J))) = V (J).

Proof. Since X is an algebraic set, X = V (J) for some ideal J of R[x1, . . . , xn].
We have already shown that X ⊂ V (I(X)) so what remains is to show that
V (I(X)) ⊂ X. Let x ∈ V (I(X)). Then this means that f(x) = 0 for every
f ∈ I(X). But I(X) = I(V (J)) ⊃ J , by Proposition 3. Thus since f(x) = 0
for every f ∈ I(X) and I(X) contains J , we certainly have f(x) = 0 for every
f ∈ J . Thus x ∈ V (J) = X.

Homework 9. Prove that not all subsets of An
R are algebraic subsets. Find

specific examples of subsets that are not of the form V (J). (Hint: we have
already given one example of this in this chapter, if you get stuck, look through
the examples and see which one is not algebraic and explain why.)

1.3 Conclusions

We have just shown a condition for V (I(X)) = X to be true. This condition is
satisfied by algebraic sets. In the coming sections, when we have developed more
general ring theory, we will be able to classify the special ideals of R[x1, . . . , xn]
so that the analogous property, I(V (J)) = J will hold. This condition is a bit
more subtle and to prove it, we will actually need to use the famous Nullstel-
lensatz of Hilbert. Before we do that, however, we conclude this chapter by
reviewing the relationships between R[x1, . . . , xn] and An

R.
Consider the following map:

V : {ideals of R[x1, . . . , xn]} −→ {subsets of An
R}

We see that this map as written above is not surjective. Indeed, by Homework 9
not every subset of An

R is of the form V (J) for some ideal J . We also saw in this
chapter that V is not injective as written either. As we computed, V (x2) = V (x)
but (x2) 6= (x). So it would seem our maps are not very friendly at the moment.
Now consider the map:

V : {ideals of R[x1, . . . , xn]} −→ {algebraic subsets of An
R}

Now although our map V is still not injective for the same reason as before, it
is now surjective onto the new set of algebraic subsets of An

R. Injectivity will
have to wait until the next chapter, however.
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Remark: The critical reader might object to our apparent excitement over
a surjective map. Indeed, we defined the set of algebraic subsets as the image
of all ideals, and therefore, it’s not incredibly interesting that by restricting
the range of our function to the image of V that it is all of sudden surjective.
The interested reader might find it amusing to reconstruct the maps V and I
using not ideals of R[x1, . . . , xn] but just arbitrary subsets. In doing so, he or
she will discover (we actually proved it in this chapter!) that even under these
conditions, V (S) will still be an algebraic subset of An

R and I(X) will still be
an ideal. Of course doing this gives no greater insight into what is really going
on here, which is why this comment is headed with the word Remark instead of
Homework.

Homework 10. Now for an actual homework problem. We just discussed the
properties of the function V with the range restricted to algebraic subsets. What
can be said about the function

I : {algebraic subsets of An
R} −→ {ideals of R[x1, . . . , xn]}?

Prove it is not surjective, but that it is injective. (Hint: In restricting everything
down to algebraic subsets, we ominously have not used which particular recent
fact?)

1.4 Basic Set Theoretic Exercises

These exercises are not necessarily related to algebraic geometry, but neverthe-
less they are important for everyone to know. If you are like me, then it is
likely that you won’t remember which theorem is which, but after you do these
exercises, you’ll see that it’s not difficult to prove any of these statements so
you can rederive the results you need as needed.

Homework 11. Suppose that f : X → Y is injective and g : Y → Z is injective.
Prove that g ◦ f : X → Z is injective.

Homework 12. Same question for surjective maps

Homework 13. Suppose that f : X → Y , g : Y → X and f ◦ g = IdY , the
identity map on Y . Then prove
1) f is surjective;
2) g is injective.

Homework 14. Formulate your own version of the previous problem if g ◦ f =
IdX instead. Prove all claims you make. (Hint, one “proof” might be to simply
turn your paper upside down or tilt your head)

Homework 15. Reread Proposition 5 and the the section “Conclusion” of this
chapter and see how these theorems on set theory immediately imply our con-
clusions and the homework problem.
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2 Commutative Rings

2.1 Basic Definitions

In the first chapter we discussed the polynomial ring R[x1, . . . , xn]. In the
course of this book, we will mainly be dealing with polynomial rings, so this is
the concept we’d like you you to keep in mind. It will be useful, however, to
introduce the concept of an abstract commutative ring. If nothing else, it will
be nice to show that the theorems we will be proving work over most rings and
not just R[x1, . . . , xn].

Definition 5. A ring is a set R together with two binary operations, denoted
+ : R×R −→ R and · : R×R −→ R, such that

1. (a+b)+c = a+(b+c) and (a ·b) ·c = a ·(b ·c) for all a, b, c ∈ R (associative
law)

2. a + b = b + a for all a, b ∈ R (commutative law)

3. There exists an element 0 ∈ R such that a + 0 = a for all a ∈ R (additive
identity)

4. For all a ∈ R, there exists b ∈ R such that a + b = 0 (additive inverse)

5. a · (b + c) = (a · b) + (a · c) and (a + b) · c = (a · c) + (b · c) for all a, b, c ∈ R
(distributive law)

6. There exists an element 1 ∈ R such that a · 1 = 1 · a = a for all a ∈ R.
(multiplicative identity)

If in addition, the multiplication · is commutative, a · b = b · a for every a, b ∈ R
then we say that R is a commutative ring.

Examples: There are plenty of examples of rings that you are already
familiar with.

• The integers, rational numbers, and real numbers (Z, Q, R) are all com-
mutative rings with identities 0 and 1.

• The ring of Mn(R) of n×n matrices with real entries is a ring under matrix
addition and multiplication. It is not commutative if n > 1. (Proof left
to the reader)

• Let X be a set. Let SR(X) denote the set of all real valued functions on
X. This is a commutative ring. This is the set of all functions f : X → R.
Addition and multiplication are defined in terms of the corresponding
operations on the real numbers. For instance, if f, g are functions from
X to R then f + g is the function defined by (f + g)(x) = f(x) + g(x),
and fg(x) = f(x)g(x). (We are simply adding and multiplying the real
numbers f(x) and g(x).)
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• The above example generalizes if R is replaced by any ring R. SR(X) is
always a ring, and is commutative if R is commutative.

• The integers “modulo n” form a commutative ring denoted Zn Addition
and multiplication of integers is carried out as usual and then the result
is reduce mod n.

• Any field is a commutative ring.

One thing that is different in the case of arbitrary rings versus, say, the integers
is that we may multiply to get zero in non-trivial ways. For instance, in the
ring Z6 we have that 3 · 2 = 0. Similar examples exist for matrices and many
other rings. To discuss this phenomena, we give a few definitions.

Definition 6. Let R be a commutative ring. We say that an element x ∈ R is
a zero-divisor if x 6= 0 and there exists some y 6== 0 in R such that xy = 0.

Definition 7. Let R be a commutative ring. We say that an element x ∈ R is
nilpotent if there exists an integer n such that xn = 0.

Homework 16. In the examples above, we can have the unfortunate problem of
nilpotent elements. In the examples of Mn(R), and Zn, find nonzero elements
x and some positive integer m such that xm = 0. If you have two nilpotent
elements x, y is their sum nilpotent? Check both Mn and Zn carefully...

The previous homework problem should have familiarized the reader with
these new concepts. A ring with no zero divisors is called an integral domain
and this definition is equivalent to the following:

Definition 8. A commutative ring R is called an integral domain if for some
x, y ∈ R, xy = 0, then either x = 0 or y = 0. Equivalently, if x, y 6= 0 then
xy 6= 0.

In other words, the only way you can multiply to zero is by using zero. All of
our favorite rings like Z, R, and all fields are integral domains. As a general rule,
most of the basic rings we start with will be integral domains, but as we start
passing to more sophisticated structures, adding zero-divisors actually makes
things a bit easier in some sense. Don’t worry so much now about all of this, it
will come up again when we discuss quotient rings.

Homework 17. In general we do not have a cancelation law for commutative
rings. Indeed, 4 · 9 = 4 · 4 in the ring of integers mod 10. But 9 6= 4. (We can’t
cancel the 4s). We do have such a law for integral domains. Prove that if R is
an integral domain and xz = yz for some z 6= 0, then x = y.

Homework 18. Prove that R[x] is an integral domain.

In doing the previous homework assignment, what did you notice about the
proof? It most certainly didn’t rely on any particular facts about R other than
the fact that R is an integral domain. Indeed, it seems time that we stepped
out a bit further and defined a polynomial ring in general.
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Definition 9. Let R be a commutative ring. Then the polynomial ring R[x1, . . . , xn]
is the set of all polynomials in n variables with coefficients in R. Addition and
multiplication is defined in the usual way.

Remark: When we say “the usual way” in the above definition, don’t feel
as if we are only telling you half of the story. Indeed, writing out the explicit
formula for multiplication, (or even for the general element of R[x1, . . . , xn] for
that matter!) would not lead to any greater understanding of the polynomial
ring. Just think of it as R[x1, . . . , xn] with generalized coefficients and you will
be fine.

Note that since by definition, each element of R is a constant polynomial, it
is an element of R[x1, . . . , xn]. Thus we can consider R ⊂ R[x1, . . . , xn]. With
this in mind, if R is not an integral domain, then neither is R[x1, . . . , xn] since
zero divisors in R are naturally zero divisors in R[x1, . . . , xn]. This along with
a slight tweaking of Homework 18 we have the following:

Proposition 6. R[x1 . . . , xn] is an integral domain if and only if R is an integral
domain.

Proof. Note that, for example, R[x, y] = (R[x])[y]. Just think of R[x, y] as
polynomials in y with coefficients that are polynomials in x. (If this makes you
wary, please assign yourself an extra homework assignment and convince yourself
that this is true.) Thus from our tweaked homework problem, we know that if
R is an integral domain, then so is R[x]. Thus by the same homework problem,
since R[x] is an integral domain, so is (R[x])[y] = R[x, y]. Thus continuing by
induction, our proof is complete.

For the remainder of these notes, we assume all rings are commutative un-
less stated otherwise. For most applications that we do, the rings will mostly be
polynomial rings over fields, or quotients thereof. To define a quotient ring, how-
ever we need to develop an abstract version of the polynomial ideal introduced
in the first chapter.

Definition 10. Let R be a ring. A subset I ⊂ R is called an ideal if I is
nonempty and the following two properties hold:

• If x, y ∈ I then x + y ∈ I. (Closure under addition)

• If x ∈ I and r ∈ R (any element in R) then rx ∈ I. (closure under ring
multiplication)

Just as we saw in the first chapter, there are many different examples of ideals
in the polynomial ring R[x]. Of course all these ideals have their counterparts
in arbitrary rings R[x] as well. Now let’s look at some ideals in other rings

Example:

• Let R be a ring, and let x ∈ R. By (x) we mean the ideal of all multiples
of x:

(x) = {rx : r ∈ R}.
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This is clearly closed under ring multiplication. To see it is closed under
addition, consider rx + sx = (r + s)x ∈ (x).

• Let R be a ring, and x1, . . . , xn ∈ R. Then we define

(x1, . . . , xn) = {r1x1 + . . . rnxn : ri ∈ R}

just as we did for polynomial rings.

• Let R = Z6, a ring with 6 elements {0, 1, 2, 3, 4, 5} and addition is done
modulo 6. Consider I = (2). Then it is evident that

(2) = {0, 2, 4}

• Let R = Z6 again, only this time consider (5). Check for yourself that
(5) = R.

What happened in the last example, where an element generated the entire
ideal, is an important notion.

Definition 11. Let R be a ring. Then x ∈ R is called a unit if there exists
y ∈ R such that xy = 1.

In the last example, 5 is a unit because 5 · 5 = 1. In fact we have the
following:

Homework 19. Prove that in a ring R, x is a unit if and only if (x) = R.

Definition 12. A field is a commutative ring such that every nonzero element
is a unit.

Note that this definition and the preceding homework problem give a very
nice result about ideals of a field.

Proposition 7. Let F be a field. Then the only ideals of F are {0} and F .

Proof. Let I be a nonzero ideal. Then there exists x ∈ I with x 6= 0. By the
above homework, (x) = F . But then F = (x) ⊂ I so I = F .

Homework 20. Let F be a field, and F [x] the ring of polynomials over F .
Prove that if f ∈ F [x] is a unit then f ∈ F . Thus, no nonconstant polynomial
can be a unit.

To see the necessity that F be a field in the previous problem, consider the
following example. Let R = Z4 and consider R[x]. Then in R[x],

(2x + 1)(2x + 1) = 4x2 + 4x + 1 = 0 + 0 + 1 = 1

so that 2x+1 is a unit. For a very challenging homework problem, try to classify
all units in R[x]. To see how to do this for a general ring R, see Introduction to
Commutative Algebra by Atiyah & MacDonald.
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Homework 21. Compute the units in Z6, Z8, Z12, Zn. (Hint for Zn: Let a, b
be integers. Then what numbers can be expressed as ax + by where y, x are
integers? A classic result from number theory says that you can write gcd(a, b)
in this form as well as all of its multiples, and that these are the only solutions.)

Homework 22. Let F be a field. Prove F has no zero-divisors.

2.2 Quotient Rings: Preview

So far, the contents of this chapter have been pretty elementary. A ring is
simply something that behaves like the integers, or like the set of polynomials.
Ideals are simply specialized subsets of rings, and units are just elements with
multiplicative inverses. The next topic we will discuss is the notion of a quotient
ring. We start this section with a motivation from modular arithmetic.

We have alluded to modular arithmetic many times already. We assumed
the reader was at least familiar with the operations thereof. (Add and subtract
as usual, and then take the remainder when you divide by n.) For example, in
Z12, 6 · 7 = 42 = 3 · 12 + 6 so 6 · 7 = 6 in Z12. What the reader may not be
familiar with, is the more formal construction of modular arithmetic that we
now give.

Modular Arithmetic:

Definition 13. Let S be a set. An equivalence relation ∼ is a relation on S
such that the following hold

• x ∼ x for all x (Reflexive Property)

• If x ∼ y then y ∼ x for all x, y (Symmetric Property)

• If x ∼ y, y ∼ z then x ∼ z for all x, y, z (Transitive Property)

(Strictly speaking, we should define what we mean by a relation, but doing so is
clunky. Instead just think of ∼ as a new way of saying elements are equal.

You already know many examples of equivalence relations from previous
math courses. For example, if S is the set of triangles in the plane, then if we
define

T ∼ T ′ if T and T ′ are congruent triangles

then ∼ is an equivalence relation.
For another example, let S be the set of all people on Earth. Then if we

define
X ∼ Y if X and Y are related by blood

then ∼ is an equivalence relation.

Homework 23. The properties in the definition, (reflexive, symmetric, tran-
sitive) do not imply each other. Play around a bit and try to find relations
(these won’t be equivalence relations by definition) that have exactly one of the
properties, or exactly two of the properties.
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Now let S = Z be the set of integers. Let n be a positive integer. Then we
define ∼ as follows:

x ∼ y iff x− y is a multiple of n .

Using our notation of ideals, we could rewrite this as

x ∼ y iff x− y ∈ (n).

To see that this is an equivalence relation is easy, and we will only show the
transitive property. Suppose that x ∼ y and y ∼ z. Then x−y = kn, y−z = ln
for some k, l ∈ Z. Then x− z = kn + ln = (k + l)n ∈ (n), so x ∼ z.

Now that we have an equivalence relation we can define the equivalence class
of an element.

Definition 14. Let S be a set, and ∼ an equivalence relation on S. Then if
x ∈ S we define

x = {y ∈ S : x ∼ y}.

To give this some context, in the example of triangles, T is the set all of
triangles congruent to T . In the set of all people, Kevin Bacon is the set of
all people related to Kevin Bacon. (If you believe in creationism, then for any
people X and Y , X = Y = {the whole world} since everyone is related.)

In our final example, if n = 5 then 3 = {. . . ,−7,−2, 3, 8, 13, . . .} or the set
of all numbers 3 mod 5. Thus 3 = 8 = −2.

Definition 15. Let S = Z be the set of integers and let ∼ be the equivalence
relation defined above. We define the “integers modulo n” to be the set of equiv-
alence classes x with the operations x + y = x + y, and xy = xy.

The reader should now check that addition and multiplication of these equiv-
alence classes is well-defined. (That is, that whether you pick 3 or 8 to represent
the class of 3 mod 5, the answer will not depend on this.) This definition of
modular arithmetic turns out to be the same as the one we are used to, but was
constructed in a more general way. When we write

21 + 25 = 2 mod 11

we are really adding 21 and 25 and getting 1, but we drop the bar notation
because there really is no point of confusion.

We briefly review what we just did because it is important: We took our set
to be the ring of integers. We took a subset, an ideal (n) and then said x ∼ y if
x− y ∈ (n). Then we took the class of all equivalence classes, x. In this new set
we had the cool property that n = 0 so that basically n now becomes 0. Keep
these things in mind as we move on to the more general case.

14



2.3 Quotient Rings

Let I be an ideal of a ring R. Define an equivalence relation ∼ on R as follows:

x ∼ y iff x− y ∈ I.

Let x denote the equivalence class of an element x. We ask now, what do
elements equivalent to x look like?

Suppose that x ∼ y. Then x− y ∈ I so that x− y = a for some a ∈ I. Thus
y = x−a, which is x plus some element in I. In fact it is not hard to generalize
this to the following

Claim: x is the set of all elements of the form x + a where a ∈ I.
For this reason, rather than writing x for the equivalence class of x, we

simply write x + I. We can now talk about the set of all equivalence classes,
and we call this set R/I. Namely,

R/I = {x + I : a ∈ R}.

We now try our luck at defining addition and multiplication on R/I and
hope that we get a ring. There’s really only one way to do this, so we try it:

(a + I) + (b + I) = (a + b + I),

(a + I) · (b + I) = (ab + I).

Looking at this definition it seems to have all the properties of a ring that
we want. The identity elements are 0 + I and 1 + I, and all the distributive
properties simply come from the corresponding facts about R. The only problem
is of course the fact that these operations might not be well defined. We will
prove this immediately after stating our result.

Proposition 8. With the above operations defined, the set R/I becomes a com-
mutative ring, which we call the quotient ring of R by I. (Sometimes read R
mod I.)

Proof. We must check that addition is well defined. Suppose that we are adding
a+I and b+I, but that we know a+I = c+I and b+I = d+I. Then we must
show that our formula for addition doesn’t depend on which representation we
choose. Thus we must show that

(a + I) + (b + I) = (c + I) + (d + I)

Which is the same as showing a + b + I = c + d + I. The first of these is the
equivalence class of a + b and the second of c + d. These two sets will be equal
precisely if a + b and c + d are equivalent, that is, if

a + b− (c + d) ∈ I

But a + b− (c + d) = (a− c) + (b− d) and since a ∼ c and b ∼ d we have a− c,
b− d ∈ I, and the result follows.
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For multiplication: Suppose that a, b, c, d are as above. Then we know that
a ∼ c, b ∼ d, so a− c ∈ I, b− d ∈ I. Since I is an ideal

b(a− c) + c(b− d) = ab− cd ∈ I.

So that ab ∼ cd and thus ab + I = cd + I.

Remark: It will greatly benefit the reader to see the following: In the
quotient ring R/I,

x + I = y + I iff x− y ∈ I.

This is just a restatement of the definition we gave above, but we feel this gives
a better feel for what is going on.

Examples:

1. Zn is the quotient ring Z/(n). In this example, what we formerly called x
is now x + (n).

2. Let R be any ring, and let I = R. Then R/I = 0 since x + I = y + I for
any two elements in R. (Really, it’s just saying that x− y ∈ I = R, which
is a pretty easy definition to satisfy.)

3. Let R = R[x], I = (x2). We make the claim that

R/I = {a + bx + I : a, b ∈ R}.

Indeed, suppose that f(x) = anxn + · · · + a1x + a0 is any element of R.
Then

f(x)− (a1x + a0) = x2(anxn−2 + · · ·+ a2) ∈ (x2)

so f(x) + I = a0 + a1x + I. In other words, once we took the quotient by
x2, our resulting ring was still a polynomial ring, only this time x2 = 0.

The idea hit on in the last example is precisely the way to think about quotient
rings. If you quotient by an ideal I, then the resulting ring is the same, except
now every element of I is 0. Indeed, in Zn = Z/(n), all multiples of n are
considered 0. In R/R, everything is considered 0.

Example: We now do a slightly harder example, and instead of being com-
pletely rigorous, we appeal to what we just discovered. Let R be any ring, and
let I = (x2 − 5) be an ideal of R[x]. Then in R[x]/I, we have the relation
x2 − 5 = 0, or in other words, x2 = 5. Thus whenever we want to write an
equivalence class of a polynomial, we first write it down and then note that
x2 = 5. It isn’t hard to see then, that everything reduces down nicely to just
linear functions. For example,

x4 + 3x3 + x + I = (x2)2 + 3(x2)x + x + I = 52 + 3(5)x + x + I = 25 + 16x + I.

We might even get lazy and leave the “+I” out and just say that

x4 + 3x3 + x = 25 + 16x mod (x2 − 5)
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just as we did with modular arithmetic. To complete this example, we really
should explain how to multiply. This can be done as follows: In R[x]/I,

(ax + b)(cx + d) = (5ac + bd) + (ad + bc)x mod (x2 − 5).

Basically the rule is: multiply as normal, and then use the relation x2 = 5 to
simplify.

Homework 24. Consider the following subset of the real numbers,

Z[
√

5] = {a + b
√

5 : a, b ∈ Z}.

Prove that S is a commutative ring and write out the multiplication rule.
Now consider the last example, with R = Z. In the end we computed a ring

Z[x]/I where we constructed a “square root” of 5. In other words, we made x
satisfy x2 = 5. Convince yourself that the formal construction in the example
is the same as this more down to earth problem.

It is often better to use the more abstract version, because we cannot always
write down an explicit formula for the solutions to some equations. For example,
the solution in radicals to x3−3x2+x−5 = 0 is probably very nasty, and a result
from Galois Theory tells us that if the degree is 5 or greater then in general, the
solution cannot be expressed in terms of radicals.

Homework 25. Let k be a field. What is k[x]/(x).?

Homework 26. Let k be a field, and R = k[x, y]. What is R/(x, y)? R/(x2, y3)?

Homework 27. What is R[x]/(x2 + 1)? Write out the rule for multiplying
elements, does this object look familiar to you?

3 Applications to Algebraic Geometry

In the first section of these notes we introduced two maps

V : {ideals of R[x1, . . . , xn]} −→ {subsets of An
R}

I : {subsets of An
R} −→ {ideals of R[x1, . . . , xn]}

and we saw that these maps are not quite bijective. If restrict the subsets of An
R

to be algebraic, then we are halfway there. We are now better to discuss the
other side of the problem; the one of ideals.

Definition 16. Let R be a ring, and I an ideal. The radical of I denoted
√

I
is given by √

I = {x ∈ R : xn ∈ I for some n}.

An ideal I is called a radical ideal if I =
√

I.

Example: Let R = R[x1, . . . , xn], and let I = (x3). Then
√

I = (x).
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Proof. Clearly (x) ⊂
√

(x3), since if x · f(x) ∈ (x), then (x · f(x))3 ∈ (x3).
Conversely, suppose that f(x) ∈

√
(x3). Then f(x)n ∈ (x3) for some n. Thus

f(x)n has a factor of x3, so f has a factor of x, thus f(x) ∈ (x).

Homework 28. Concoct your own proof that
√

(xn) = (x).

Homework 29. In an integral domain prove that
√
{0} = {0}. Show this is

not true for general rings. Finally, show that if
√

I = R, then I = R.

The radical in the previous homework has a special name and merits its own
definition.

Definition 17. The nilradical of a ring R, Nil(R) is the radical of the zero
ideal,

√
0.

Proposition 9. The radical of an ideal is an ideal.

Proof. Let I be an ideal in R, and x, y ∈
√

I. (Say xn ∈ I, ym ∈ I.) If r ∈ R then
clearly (rx)n = rnxn ∈ I so rx ∈

√
I. Finally we must show that x + y ∈

√
I.

This can be done by taking high enough powers. By the binomial theorem,

(x + y)m+n =
m+n∑
i=0

rix
iym+n−i

for some coefficients ri ∈ R. Now look at each of these terms. If i ≥ n, then
xi ∈ I, and thus so is the ith term. If i < n, then m+n− i > m so ym+n−i ∈ I.
Thus every term is in I, so x + y ∈

√
I.

To give us more practice with quotient rings we, prove the following propo-
sition relating the radical of an arbitrary ideal with the nilradical of a quotient
ring.

Proposition 10. Let I be an ideal of a ring R. Then
√

I can be identified with
Nil(R/I) in the natural way: x 7→ x + I.

Proof. Let x ∈
√

I. Thus xn ∈ I for some n. We want to show that x + I ∈
Nil(R/I). But (x + I)n = xn + I = 0 + I so x + I ∈ Nil(R/I).

Conversely, if y + I ∈ Nil(R/I), then yn + I = 0 for some n, so that yn ∈ I
and y ∈

√
I as required.

3.1 Hilbert’s Nullstellensatz

In this section we will state and prove the majority of Hilbert’s Nullstellensatz.
In German, the name literally means “Theorem on the zeros of a polynomial”.
Using the Nullstellensatz, we will be able to better answer the questions posed in
the first section about the relationship between the maps I and V . Throughout
this section we will do all of our work over an abstract field k. The affine plane
An

k should be identified with kn if it makes you feel more at ease. We begin
with a small result:
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Proposition 11. Let X be a subset of An
k . Then I(X) is a radical ideal.

Proof. It is always true that I ⊂
√

I for any ideal I (since f1 ∈ I if f ∈ I), so
we must show the other inclusion. Suppose f ∈

√
I(X). Then for some integer

n, fn ∈ I(X). This means that fn(x) = 0 for each x ∈ X. But this means that
f(x) = 0 for each x ∈ X, so f ∈ I(X).

In the last proposition we saw that I ⊂
√

I. In general we can have ideals
that contain one another. For example, in k[x], we have

(x) ⊃ (x2) ⊂ (x3) ⊂ · · · (xn) ⊃ · · ·

In R[x] we have (x2− 1) ⊃ (x− 1) and (x2− 1) ⊃ (x + 1). This is true since
any multiple of x2 − 1 is also a multiple of x − 1 and x + 1. Thus we begin to
see that the inclusion of ideals is somehow related to factorization. So far, all
the ideals we have listed in this section are ones generated by a single element.
These ideals are given a special name:

Definition 18. A principal ideal is an ideal generated by a single element, that
is, one of the form (f). If every ideal in a ring R is principal, then we say R is
a principal ideal domain. (PID)

Note that just because an ideal is presented to us with more than one gen-
erator this does not mean that the ideal is not principal. For example, in R[x]
consider (x, 2x). This ideal is clearly the same as (x). We say the extra gener-
ator is redundant. To give this some comparison to linear algebra, recall that a
set of n vectors doesn’t have to span an n−dimensional space. The span of the
vectors could easily be the same as the span of just one of them.

Finally, we note that not all rings are PIDs. Indeed, consider the polynomial
ring R[x, y]. Consider the ideal (x, y). This cannot be generated by one element.

Homework 30. Prove that (x, y) is not a principal ideal.

PIDs are extremely important in algebra. In addition to the obvious ease
that all ideals being principal gives, these rings also have many other properties
that we will not discuss here. Thus it is important to have a nice supply of these
objects.

Proposition 12. Let k be field. Then k[x] is a PID.

Proof. We sketch a proof of this. Let I be an ideal in k[x]. Then I has a set
of generators, (f1, . . . , fn). Let g be the g.c.d. of the the polynomials. Then
I = (g). It is a standard fact from the Euclidean algorithm that g can be written
as a combination of the fi, so (g) ∈ I. And also, any element of I is a sum of
multiples of the fi so that it is also a sum of multiples of g, the g.c.d.

We now go back to our example with (x2 − 1). We saw that for example,
(x2 − 1) ⊂ (x− 1).

Question: In R[x] can you find an ideal that properly contains (x− 1) that
is not equal to the whole ring?
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The answer to this question is no. Suppose that there were some ideal J
with this property, and (x− 1) ⊂ J strictly. Then there is some f ∈ J\(x− 1).
This f is not a multiple of (x− 1) so we use polynomial long division to get

f(x) = (x− 1)q(x) + r

where r is a constant and not equal to 0. But then

1 =
1
r
f(x)− 1

r
(x− 1)q(x) ∈ J

so 1 ∈ J and thus J = R[x].
In general, if the only ideal properly containing I is the whole ring, then I

is called a maximal ideal.

Definition 19. An ideal m ⊂ R is maximal if

m ⊂ J ⊂ R

implies either J = m or J = R.

(It is standard to use the letter m to denote a maximal ideal)
The work we did above easily generalizes to the following proposition:

Proposition 13. Let k be a field. In k[x], ideals of the form (x − a) are
maximal.

In this discussion, there is an inherent problem in the field that we are
working over. For instance, in R[x], the polynomial x2 + 1 does not factor,
and is therefore a maximal ideal. (The details are left to the reader). But in
C[x], this polynomial factors as (x + i)(x− i) so the ideal is it generates is not
maximal. These difficulties are annoying so we’ll just eliminate them for the
rest of the section as follows.

Definition 20. A field k is called algebraically closed if every polynomial has a
root. (This definition is equivalent to saying that every polynomial factors into
a product of linear terms)

Proposition 14. If k is algebraically closed, then the only maximal ideals of
k[x] are of the form (x− a).

Proof. We have already seen that all ideals of this form are maximal. So now
suppose that we have an ideal m that is maximal, but not of this form. Then
since k[x] is a PID, m = (f) for some f ∈ k[x]. Then if f is not a linear
polynomial, it has a linear factor, (ax− b) and then m = (f) ⊂ (ax− b) where
the inclusion is strict, so m is not maximal.

The fact that k[x] is a PID was very crucial in our proof of the above propo-
sition. Equally important was the fact that k is algebraically closed. For ex-
ample, in k[x, y], the ideal (x− a) is no longer maximal because it is contained
in (x − a, y), which is not a principal ideal. The maximal ideals, however be-
have very nicely and the work we did above generalizes nicely to the following
proposition
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Proposition 15. (Nullstellensatz Part 1): Let k be an algebraically closed field.
Then each maximal ideal of k[x1, . . . , xn] has the form

(x1 − a1, x2 − a2, . . . , xn − an).

Proof. This is the first part of Hilbert’s famous Nullstellensatz. We do not give
a full proof here because the insight is the same as in the case in one variable
and the proof is technical. For a reference see Reid, or Artin.

Corollary 1. There is a natural bijection between maximal ideals of k[x1, . . . , xn]
and points (a1, . . . , an) in An

k .

Proposition 16. (Nullstellensatz Part 2): Let I be a proper ideal of k[x1, . . . , xn].
Then V (I) 6= ∅. (In other words, if I = (f1, . . . , fr) then the system of polyno-
mial equations fi = 0 has a solution.)

Proof. We will use the following fact: Every ideal is contained in a maximal
ideal. Thus I ⊂ m = (x1−a1, . . . , xn−an) for some (a1, . . . , an). Each element
f of I is a combination of xi − ai,

f =
∑

ci(xi − ai).

It is then clear that f(a1, . . . , an) = 0 so I vanishes at (a1, . . . , an).

Proposition 17. (Nullstellensatz Part 3): I(V (J)) =
√

J .

Proof. We first show that
√

J ⊂ I(V (J)). Let f ∈
√

J . Then for some n,
fn ∈ J ⊂ I(V (J)). But I(V (J)) is a radical ideal since it is of the form I(X).
Thus f ∈ I(V (J)).

The heart of this proof lies in showing the other inclusion. We assume
that f ∈ I(V (J)). We must show that fm ∈ J for some integer m. Let
J = (f1, . . . , fr). Then consider

J̃ = (f1, . . . , fr, 1− yf) ⊂ k[x1, . . . , xn, y].

Claim: V (J̃) = ∅.
To show this we pick an arbitrary point a = (a1, . . . , an+1) ∈ An+1

k . We will
show that J̃ does not vanish at a.

Case 1: (a1, . . . , an) is a common zero of f1, . . . , fr. Then (a1, . . . , an) ∈
V (J) and since f ∈ I(V (J)), f(a1, . . . , an) = 0 as well. Thus

(1− yf)(a) = 1− y · f(a1, . . . , an+1) = 1− 0 = 1

so J̃ does not vanish at a.
Case 2: If (a1, . . . , an) /∈ V (J) then some fi(a1, . . . , an) 6= 0. But then

fi(a1, . . . , an+1) 6= 0 as well since fi does not depend on y.
Thus V (J̃) = ∅ which by the Nullstellensatz Part 2 implies that

J̃ = (1) = k[x1, . . . , xn, y].
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Hence we can write 1 as a combination of the generators of J̃ .

1 =
r∑

i=1

gi(x1, . . . , xn, y)fi + h(x1, . . . , xn, y)(yf − 1).

This is an identity, so we are free to let y be anything we want. We set y = 1/f ,
to get

1 =
r∑

i=1

gi(x1, . . . , xn, 1/f)fi + h(x1, . . . , xn, y)(0).

Multiplying through by a high enough power of f to clear all the fractions, we
get

fn =
r∑

i=1

Gi(x1, . . . , xn)fi ∈ J

where the Gi are the just the resulting polynomials we get after the multiplica-
tion.

We have thus just answered one of the first main questions of these notes:
when do the operations V and I undo each other? We saw in the first chapter
that V (I(X)) = X if X is an algebraic set. Just now we saw that I(V (J)) =

√
J

so that if J is a radical ideal, then I(V (J)) = J . We remind you that this
matches what we discovered experimentally before, that I(V (x2)) = (x) =√

(x2). Thus we finally have our bijection:

{radical ideals of R[x1, . . . , xn]} ←→ {algebraic subsets of An
R}.

4 Bézout’s Theorem and Projective Space

In this section we will begin by stating Bézout’s Theorem for the affine plane
and then use this to motivate Projective space and the general form of Bézout’s
Theorem.

For the first part of this section we will work over R2, mainly so that the
graphs we illustrate for you are familiar from high school analytic geometry. It
is actually easier (as it usually is) to think of everything as being over C2, since
C is algebraically closed. Unfortunately, when we think of C we usually think
of it as a plane, so that C2 often becomes a 4-dimensional space in our minds
instead of a 2-dimensional one. If this chapter should teach you anything, it is
that just because you cannot visualize something over an arbitrary field, or in
the new projective space, you should not be afraid to get your hands dirty and
discover the properties of the object.

4.1 Bézout’s Theorem for R2

In high school we looked at certain curves in the plane. Usually these curves
were complicated polynomial expressions and we determined such properties as

22



concavity, relative and global extrema, etc. Within this large class of curves,
we also studied the Conic Sections. This class of curves includes the parabola,
hyperbola and ellipse. The general form for the equation of a conic is

Ax2 + By2 + Cxy + Dx + Ey + F = 0.

To simplify things a bit, we can make a change of coordinates using a method
known as “rotation of axes” to eliminate the xy term. If A,B 6= 0, then we can
complete the squares in the variables x and y, to get something of the form.

a(x− h)2 ± b(y − k)2 = 1.

If the sign is a + then we get an ellipse (or circle). If the sign is negative, then
we get a hyperbola. If A or C is zero, then we have a parabola.

Remark: In each of the cases listed above, very bad things could occur. For
instance, the equation x2 + y2 = 0 represents only one point. The “hyperbola”
(x − y)(x + y) = 0 represents two intersecting lines. Be aware that things
like this exist and that our write-up above was not entirely accurate. Then ask
yourself if you really wanted to read a write-up that was. If yes, do the following
homework problem. If no, skip it.

Homework 31. Write a proper write-up of the conic sections considering all
special cases.

Bézout’s Theorem is a statement concerning the number of points of inter-
section of curves. Before we can state it, we will look at some examples using
our conics. Consider a line L and a conic C. In how many points can L and C
intersect? Figure 1 shows that this number can be 0, 1 or 2.

Figure 1: A conic intersecting a line

Consider two conics C and D. In how many points can these intersect.
Figure 2 shows us that this number can be 0, 1, 2, 3, 4. The number of possible
intersections has increased. Why? The reason for this is because conics are
degree two curves, while lines are degree one. The more degree, the more
intersections! We make all this formal in the following definition and theorem.

Definition 21. Let C be a curve given by a polynomial equation of the form
G(x, y) = 0. Then the degree of C is the degree of the highest monomial term
of G. (For example, the equation x5y + 2x + 9 = 0 has degree 6.)
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Figure 2: Two conics intersecting in 0,1,2,3 and 4 points

Proposition 18. (Bézout’s Theorem for R2) Let C and D be two curves in R2

of degrees c and d respectively. If C and D have no common component, then
C and D intersect in at most cd points.

We may prove Bézout’s Theorem at a later time, and if we do, we will prove
the general statement for the projective plane. We now try to motivate this
statement and its generalization.

First things first, we must must abandon our notion of what polynomial
curves look like. In high school we all encountered many different graphs of
cubic polynomials, but what’s important to remember was that all of these
graphs were of the form

y = ax3 + bx2 + cx + d.

No terms involving higher powers of y were used.
As a first example, consider the equation

(y − 1)(y − 2)(x− 3) = 0.

This is a cubic curve since the highest degree term is xy2. But it is easy to see
that this curve is the intersection of three lines. This is an example of what is
called a reducible cubic.

Definition 22. A polynomial curve C is said to be reducible if it can be written
as a union C = D ∪ E where D and E are both polynomial curves.

This definition of reducible is very geometric. In terms of algebra, it is good
to associate reducible curves with polynomial expressions which factor.

Let us now generate a different type of reducible cubic curve. Take your
favorite conic. Mine is the unit circle given by

x2 + y2 − 1 = 0.
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This has degree two, so let’s multiply it by something of degree 1, a line. We’ll
pretend that I have a favorite line and that it is x + y − 1 = 0. Then when we
take the product we get

(x + y − 1)(x2 + y2 − 1) = 0

which is a cubic polynomial equation. This curve is simply the union of our
favorite circle and line.

Homework 32. Let C be a reducible cubic, prove that C is either three lines,
or an irreducible conic union a line. (Recall that the union of two lines is a
reducible conic)

Irreducible cubics come in all varieties. (No pun intended!) We illustrate a
few in Figure 3.
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Figure 3: Some irreducible cubic curves

Now it should be clear what we mean when we say that two curves share a
component. For example, the two conics

(x2 − y)(x− 1) = 0 and (x2 + y)(x− 1) = 0

both share the line x−1 = 0. Therefore they intersect in infinitely many points,
so Bézout’s Theorem cannot apply.

4.2 A Closer Look at Bézout’s Theorem

Perhaps the words “at most” stuck out to you when you read the statement of
Bézout’s Theorem . It would be great if we could say in precisely how many
points two curves intersect. Of course we know that is a problem. Two lines
can intersect or be parallel; a line and a circle can intersect anywhere from 0 to
2 times; the case for conics is seemingly even more complicated. We study the
case of a circle and a line.

Consider the circle given by x2 + y2− 9 = 0 and the line given by x− 5 = 0.
Then Bézout’s Theorem says that these two curves should intersect in at most
2 points. But these do not intersect at all in R2, since the curves are disjoint.
Over the complex numbers, however, they intersect at the two points (5, 4i)
and (5,−4i). So over the complex numbers the upper bound from Bézout’s
Theorem theorem actually gives the correct number of intersection points. This
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suggests that to properly count everything, we should work over an algebraically
closed field.

We have a different problem, however with the circle x2 + y2 − 1 = 0 and
line x− 1 = 0. These intersect only at the point (1, 0) no matter what field we
are working over. Note however that in arriving at this solution we would have
the equation y2 = 0, so we see that y = 0 is a “double root”. Thus if consider
this multiplicity, we have two roots.

Definition 23. Let f(x) be a polynomial, and let f(a) = 0. Then the mul-
tiplicity of the root a is defined to be the highest power of x − a that divides
f .

To recap, we learned that to properly count the number of points of intersec-
tion we should work over an algebraically closed field and consider multiplicity.
Unfortunately, this is not enough as the case of parallel lines illustrates. Where
do the lines x = 1 and x = 2 intersect? If you are tempted to say “at infinity”
then you are exactly right. In what follows we carefully define a mathematical
framework so that we can talk about “infinity” as if it were any other point.

4.3 Projective Space: A Motivation

We begin this section with the example of two parallel lines,

x− 1 = 0 and x− 2 = 0.

These do not intersect in C2. Suppose we introduced new variables X, Y, Z such
that

x =
X

Z
, y =

Y

Z
.

Then our system of equations becomes

X

Z
− 1 = 0 m

X

Z
− 2 = 0.

X − Z = m X − 2Z = 0.

Solving this system, we see that we have solutions (X, Y, Z) = (0, λ, 0) for all λ.
Translating back to x and y we have x = 0/0, y = λ/0, which would agree with
our idea of infinity.

In this, we have basically introduced a new variable, and with this we must
be careful. For example, the pair (X, Z) = (1, 2) and (2, 4) both correspond
to the same x = 1/2. This suggests that what is important are not X and Z,
but the fraction X/Z. Less “out of nowhere” than Reid, we thus define the
projective plane.

Definition 24. Let k be a field. Then we define the projective plane

P2
k = {ratios X : Y : Z | X, Y, Z ∈ k}

with not all three zero.
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This may seem a bit fuzzy at the moment, so we will break things up into
simpler cases. Suppose that Z 6= 0. Then we can “divide by Z” and note that
the ratio X : Y : Z is the same as X/Z : Y/Z : 1, or x : y : 1. Each choice
for x and y will yield a different ratio, so when Z 6= 0, we can think of the set
of all ratios as being k2, or A2

k. If Z = 0 and y 6= 0, then we can do the same
thing to get the set of all x : 1 : 0 which we can identify with k = A1

k. Finally, if
Z = Y = 0, then the only ratio we have is 1 : 0 : 0, a single point. In conclusion
we have

P2
k = A2

k ∪ A1
k ∪ {point}.

Our original motivation for introducing the projective plane was to try to
make sense of a point at infinity. The above shows that P2 is just A2 with an
extra copy of k and an extra point. If these are all “points at infinity”, why
are there so many of them? The geometric explanation is simple: designate
one point at infinity for each slope. Thus our copy of k ∩ {point} represents
all possible slopes (real numbers and infinite), so our projective plane does the
trick.

Remark: We try to give philosophical reasons for allowing one point at
infinity for each slope of lines. We’d like to have parallel lines intersect at
infinity. At the same time we do not want to violate the axiom from Euclidean
geometry that lines should intersect in only one point (a super baby case of
Bézout’s Theorem .) Thus for any given set of parallel lines we want just a
single point where they are all to intersect. Now throw another line of a different
slope to the mix. It intersects each of these lines in A2 already, so we do not
want it to intersect anything at infinity. Thus the point at infinity for the new
line must be a “new” point. Continuing this, you see that we need a point at
infinity for each slope value.

4.4 Projective n-space

In this section we give a different definition of the projective plane and in doing
so give a better way of generalizing to n dimensions than dealing with ratios.

Definition 25. Let k be a field. Then we define projective n-space Pn
k to be the

set of lines through the origin in An+1
k .

Under this definition, the real projective plane P2
R would be the set of all

lines through the origin in R3.
We first note that we can identify the set of lines in R3 with the set of points

in R3 \ {0} provided that we identify points on the same line through the origin
- that is, nonzero multiples of each other. Formally, we can think of the set
of lines through the origin in R3 as the set of equivalence classes of points in
R3 \ {0} with the equivalence relation ∼ defined by

(x, y, z) ∼ (u, v, w) ⇐⇒ (x, y, z) = λ(u, v, w)

for some scalar λ. In other words, ratios x : y : z, so our definition is compatible
with the one defined earlier. It is this latter definition that we will use more
often. In fact we make the following definition:

27



Definition 26. Let (x0, . . . , xn) 6= 0 be a point in Rn+1. Then by [x0, . . . , xn]
we denote the point in Pn corresponding to the line through the origin and
(x0, . . . , xn).

For an example, in P2
R, [1, 2, 4] = [2, 4, 8] since they represent the same

point. The notation [x0, . . . , xn] can be thought of as the equivalence class of
(x0, . . . , xn) under the relation ∼ defined above.

Figure 4: Lines through the origin in R2 and R3

We have given a lot of time to P2 so far, and it’s not really fair to P1. We
remedy this now. First note that P0 is the set of lines through the origin in R1

which is just a single point. P1
R is the set of lines through the origin in R2. Look

at Figure 4. Each line through the origin hits y = 1 exactly once, except for the
line y = 0. Thus we can identify P1

R as a line with an extra point,

P1
R = R ∪ {point} = R ∪ P0

R.

The last part of this equation is not just for fun. We will see this generalizes.
Consider P2

R, the set of lines through the origin in R3. As in the case for P1

we can consider the plane z = 1. Almost every line through the origin in R3

will meet this plane in exactly one point, that is, all lines except those in the
xy plane. But the set of lines in the xy plane is just P1

R, so we get

P2
R = R2 ∪ P1

R.

This generalizes nicely and we get the following

Proposition 19. Let k be a field, then

Pn
k = An

k ∪ Pn−1
k
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4.5 Working with Projective Space

We’d now like to start discussing how we can fit polynomials into the frame of
projective space. From now on, if the field is implied or unimportant then we
may omit the subscript and just write Pn. We saw before that we could take
an equation in R[x, y] and turn it into an equation of R[X, Y, Z], by making the
substitution

x =
X

Z
, y =

Y

Z
.

This process is called homogenization and can be done in general.

Definition 27. Let R be a ring and let f be a polynomial in R[x1, . . . , xn]. The
corresponding homogeneous polynomial for f is the polynomial f(X1

X0
, . . . , Xn

X0
)

in R[X0, X1, . . . , Xn]. (If we have less than 4 variables, it’s customary to use
X, Y, Z instead of subscripts.)

Example: We homogenize equations from R[x, y] into R[X, Y, Z]:

• x2 + y2 = 1 goes to (X/Z)2 + (Y/Z)2 = 1 or X2 + Y 2 = Z2.

• y = x2 goes to Y/Z = (X/Z)2 or Y Z = X2.

A nice shortcut for doing this is to search for the highest degree term, and the
multiply each lower degree term by Z (or x0) to bring everything to the same
degree.

Definition 28. A polynomial f in R[x0, . . . , xn] is called homogenous polyno-
mial of degree d if every term has degree d. Such a polynomial is called a form
of degree d. The set of all forms of degree d is denoted Rd. (Here the number
of variables, is understood).

Homework 33. Prove that f(x0, . . . , xn) is a homogenous polynomial of degree
d if and only if f(λx0, . . . , λxn) = λdf(x0, . . . , xn), for all scalars λ.

It is this property that we will find very useful in our study of homogeneous
polynomials.

You’ll recall that in the first section of these notes we defined a map V so
that V (f) is the zero locus of f in An

R. In An
R, f could be any polynomial. If

we try to extend this property to projective space, we run into trouble. We
illustrate this problem in the next example.

Example: Consider the polynomial f(X, Y, Z) = XY + Z3. Then we can
evaluate f at a point in P2

R. But be careful! f([0, 0, 1]) = 1 while f([0, 0, 2]) = 8
but in P2

R, [0, 0, 1] = [0, 0, 2], so “evaluation” isn’t well defined.
Our luck isn’t much better if we only look at the zero-locus. For example,

f([2, 4,−2]) = 0, but f([1, 2,−1]) 6= 0. Luckily, in special cases, the zero locus
causes no problems, so that we can make sense of V (f). We handle this in the
following proposition.

Proposition 20. Let f be a homogeneous polynomial of some degree d. Then
the vanishing locus of f , V (f) is well-defined in P2

R.
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Proof. Suppose that a is some point in P2
R such that f(a) = 0. Then λdf(a) = 0

for each scalar λ and thus by earlier remarks, f(λ(a)) = 0. Thus f actually
vanishes at [a] and the zero locus is well-defined.

Remark: We repeat here an important hint: It is often useful to think of
P2

R as just R3 \ {0} with multiples of vectors being considered the same.
We now have a map

V : {homogenous polynomials of R[x0, . . . , xn]} −→ {subsets of Pn
R} .

A map I going the other direction can also be defined. For us the idea
of homogeneous ideals is what is really important, so we will not discuss this
development.

4.6 Bézout’s Theorem Revisited

You’ll recall that our whole motivation for introducing projective space was to
make Bézout’s Theorem more precise; to better count the number of intersection
points of curves. Our hard work pays off with the following theorem.

Proposition 21. (Bézout’s Theorem for the Projective Plane) Let k be an
algebraically closed field. Let C and D be two curves in P2

k with no common
component of degrees c and d respectively. Then counting multiplicity, C and
D meet in exactly cd points in P2

k.

We will actually prove this later on in the course of these notes using projec-
tive resolutions. For now we show the power of this theorem and give examples.

Examples: Consider the two parabolas y = x2 + 1, y = −x2. They do not
meet at all in R2, but Bézout’s Theorem tells us that they will meet in 4 points
in P2

C. In the complex plane C2 they meet in the two points (±i
√

2/2, 1/2).
We hope that the point at infinity has multiplicity two to bring us up to four.
Going to homogeneous coordinates our equations become

Y Z = X2 + Z2 , Y Z = −X2.

Solving, we get 2X2 + Z2 = 0. If Z = 0 (our point at infinity) then 2X2 = 0 so
we get X = 0 of multiplicity two as required.

Homework 34. The parallel parabolas y = x2 and y = x2 + 1 meet at infinity.
How can you count four points of intersection in the projective plane?

5 Linear Algebra and Homogeneous Polynomi-
als

In the previous section we defined the set Rd the set of forms of degree d in
R = R[x0, . . . , xn]. Note that this is not a ring for many reasons (find at least
two for homework). Rd ∪{0} is a vector space over R, however. Indeed, adding
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two forms of degree d is another form of degree d, and similarly for scalar
multiplication.

Now that we have a vector space, we recall that every vector space has a
basis. So what is a basis of R0? A form of degree 0 is just a constant, so {1} is
a basis. A basis for forms of degree 1 is {x0, . . . , xn}, so R1 has dimension n+1.
To make the notation easier for higher degrees, we simplify to three variables,
R(x, y, z). (n = 2)

Degree Basis Dimension of Rd

1 {x, y, z} 3
2 {x2, y2, z2, xy, yz, xz} 6
3 {x3, y3, z3, x2y, x2z, xy2, y2z, xz2, yz2} 10

The pattern of triangular numbers suggests that the dimension of Rd here
is

(
d+2
2

)
. In fact we have the following:

Proposition 22. The dimension of Rd in k[x0, . . . , xn] is(
d + n

n.

)
Proof. Clearly a basis for Rd is the set

S = {xa0
0 · · ·xan

n | a0 + . . . + an = d, ai ≥ 0} .

The trick will be in counting how many elements it has. This can be done in the
following way. Consider n + d bowls in a line. Fill any n with water. From this
we construct an element of S as follows. Let a0 be the number of bowls to the
left of the first filled bowl. Let a1 be the number of bowls between the first and
second filled bowls, etc. Since there are exactly n dry boxes, a0 + · · ·+ an = d.
For example, we show how to get the polynomial xy2z in R[x, y, z] in Figure 5.

x yy z

Figure 5: Choosing 2 bowls from 5 to get xy2z

A bit of thought shows that any polynomial in S can be gotten this way.
Since we are free to choose n bowls from our n + d the result follows.

So we now have a sequence of vector spaces R0, R1, R2, . . . and we know their
dimensions. This leads to a very natural question

Question: What is interesting about the subspaces of the Ri?
We motivate this with the following proposition.

Proposition 23. Let X be a subset in Pn. Then the set of homogeneous poly-
nomials of degree d that vanish on X form a vector space.
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Proof. Let f, g ∈ Rd and f and g vanish on X. Thus for every point [a] ∈ X,
f([a]) = g([a]) = 0. So clearly f +g vanishes on X as does every scalar multiple
of f . Since we’re only dealing with homogeneous polynomials, we know that
the vanishing is well-defined from previous discussion.

We will denote the set of homogeneous polynomials of degree d that vanish on
X as (IX)d. For example, if X = Pn, then (IX)d = 0 since the zero polynomial
is the only polynomial vanishing at every point. If X = ∅, then (IX)d = Rd

for each d since every polynomials vanishing on the empty set. (It’s quite silly
really.)

Our goal in this section will be to discuss the vector subspace of homogeneous
polynomials vanishing on a set X. For us, it will be a great achievement if we
can determine the dimension of such a subspace. To do so for an arbitrary set
X is a bit unwieldy, so we begin with the simple case when X is a set of points
in P2.

5.1 Conditions Determined by Points in P2.

Suppose we are given a Z = {p1, . . . , pr}, a set of r points in P2. We would like
to determine all forms of degree d that vanish on these points. Let f ∈ Rd be a
form of degree d. Then since Rd has dimension m =

(
d+2
2

)
, we have a basis of

Rd, {e1, . . . , em}. Thus
f = a1e1 + . . . + amem

for some constants a1, . . . , am ∈ R. But if f is to vanish at p1, then we can
plug in the point p1 into the above equation (remember that the ei are just
monomials of degree d) and get some equation

c11a1 + . . . + c1mam = 0.

We can actually do this for each point pi so we in fact get a system of equations

c11a1 + . . . + c1mam = 0
c21a1 + . . . + c2mam = 0

. . .
cr1a1 + . . . + c1mam = 0.

Remember, our goal is to find the constants a1, . . . , am so this is now just a ques-
tion of linear algebra. We have m unknowns and r equations. A nice intuitive
way to think about this is that to begin with, your homogeneous polynomial is
free to be whatever it wishes if it has no vanishing restrictions. But as soon as
the function is required to vanish at a certain point, that places one restriction
on its behavior. It “loses a degree of freedom” if you will. Either from this
viewpoint, or from linear algebra and knowledge of systems with m unknowns
and r equations, we have the following.

Proposition 24. Let Z be a set of r points in P2. Then dim(IZ)d ≥ Rd − r.
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Proof. Sketch: Each point imposes conditions on the set (IZ)d. If every point
takes away one degree of freedom, then we will lose r dimensions. Of course,
the conditions imposed by the points might very well be redundant, so we don’t
necessarily have equality.

We will now do several examples to familiarize you with the abstraction
above so that you feel more at ease. Suppose we are looking for polynomials
that vanish on the set Z = {[1, 0, 1], [0, 1, 1]}. Clearly no nonzero form of degree
0 can vanish on both of these points, so dim(IZ)0 = 0. (You will find this is
almost always the case, in fact you could probably prove that now!) Next we
try to tackle forms of degree 1. Forms of degree 1 look like

f = AX + BY + CZ.

If they vanish at [1, 0, 1] and [0, 1, 1], then we get the system of equations

A + C = 0

B + C = 0.

Solving this system, we see that A = −C, B = −C. Thus all solutions are of
the form

(A,B, C) = (−C,−C,C) = C(−1,−1, 1)

which is one dimensional. In this case, we started with 3 degrees of freedom,
but the two points knocked us down to 1. This should also make intuitive
sense, since a form of degree 1 is just a line, and given two points, there is a
unique line passing through them. The linear systems approach begins to get
a bit ridiculous even at the next stage. We will write down the system, but
not mention the solution. Better methods will be introduced shortly which will
make these calculations unnecessary. A form of degree 2 looks like

f = AX2 + BY 2 + CZ2 + DXY + EXZ + FY Z.

Plugging in our two points yields the system

A + C + E = 0

B + C + F = 0.

The solution to this will have dimension 4 as it will have 4 free variables. Note
that we could have also written the system in matrix form

(
1 0 1 0 1 0
0 1 1 0 0 1

)
·


A
B
C
D
E
F

 = 0.
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Since the matrix has rank 2, we expect the solution space to be 6-2=4 dimen-
sional.

We next do an example where equality does not hold in Proposition 24.
Consider the set Z = {[1, 0, 1], [0, 0, 1], [−1, 0, 1]}. Then these three points lie in
a line. We compute dim(IZ)1. Let f ∈ R1. Then

f = AX + BY + CZ.

The points give us the system

A + C = 0

C = 0

−A + C = 0

which has as a solution all triples (A,B,C) = (0, B, 0), a one dimensional vector
space. In this case, our 3 points did not each knock off a dimension, only 2 of
them did. The geometric reason for this is that if we are looking for a line
vanishing at the first two points, this uniquely determines the line. The third
point just happens to fall on that same line so it doesn’t add any new restrictions.
If that point were not on the line (say the last point of Z was [1, 1, 0]) then you
should check that there are no forms of degree 1 vanishing on Z. Thus the
dimension would be 3− 3 = 0.

Before we do another example we now note that as these examples indicate,
the linear algebra might involve several equations and it may be a mess. To
remedy this, we develop a theory to help us with our work. We will also clarify
the different between the first two examples. We start with a definition.

Definition 29. Let Z be a set of r points in P2. We say that Z imposes
independent conditions on forms of degree d if

dim(IZ)d =
(

d + 2
2

)
− r,

that is, if equality holds in Proposition 24.

In other words, a set imposes independent conditions if every one of the
points knocks the degree down. In the two examples above, the first set imposed
independent conditions on forms of degree one, since dim(IZ)d = 3− 2 = 1, but
the second did not because there were three points yet the dimension was still
1.

When a set imposes independent conditions on forms of degree d this is
extremely nice for our calculations since it immediately gives us the dimension
of (IZ)d. The trouble is that at the moment this is actually how we are defining
independent conditions. The next proposition will give a new nice criterion for
determining if a set imposes independent conditions and will be one we use quite
frequently.
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Proposition 25. Let Z be a set of r points in P2. Then Z imposes independent
conditions on forms of degree d if and only if for each point p ∈ Z, there exists
a form of degree d vanishing on the other r − 1 points, but not vanishing at p.

Proof. Suppose first that Z imposes independent conditions on forms of degree
d. Let m =dim(Rd) =

(
d+2
2

)
and let {e1, . . . , em} be a basis for Rd. Then if f

vanishes on Z then
f = a1e1 + · · ·+ amem

for some constants ai ∈ R. Plugging in the coordinates of each of the r points
of Z we get a matrix as before

c11 · · · c1m

c21 · · · c2m

· · ·
cr1 · · · crm

 ·


a1

a2

· · ·
an

 = 0.

Call the rows of this matrix b1, . . . , br. Since the points impose independent
conditions, the dimension of the nullspace of this matrix is m− r, so it follows
that the bi are all linearly independent. Let our “coefficient vector” be v =
(a1, . . . , am). Then the matrix equation tells us that bi · v = 0 for each i.
In other words, each row is perpendicular to v. We now pause to collect our
thoughts and think about what we are trying to prove.
Goal: Pick any point p ∈ Z. We are trying to find a form f of degree d that
vanishes at each point in Z except p.

Let us translate this into our notation. “Picking a point p” is like picking
a row of our matrix; “Finding a form f” is the same as finding a1, . . . , am;
“Vanishing at each point in Z except p” means that (a1, . . . , am) is perpendicular
to every row of our matrix except the one we selected. Thus we can reformulate
our problem as follows
Restatement: Let V be a vector space of dimension m, Then for any set of
r linearly independent vectors (r < m) v1, . . . , vr, we can find a vector w such
that w · vi = 0 for each i = 1, . . . , r − 1, but w · vr 6= 0.

The proof of this is simple: Consider the space U = Span(v1, . . . , vr−1). This
is an r − 1 dimensional space. So U⊥, the set of all vectors perpendicular to
U is an m − (r − 1) dimensional space. We may assume r < m. (proof for
r = m is left to the reader) Then U⊥ is at least a two dimensional vector space.
Since (v1, . . . , vr) is independent, vr is not in U so we can choose w in U⊥ not
perpendicular to vr. Then by construction, w is perpendicular to v1, . . . , vr−1

as required.
Conversely, suppose that we can remove any point p from Z and there exists

a form of degree d vanishing on all points of Z but not p. Then using the
notation above, this means for each i there exists a vector vi such that

vi ⊥ b1, b2, bi−1, bi+1, . . . , br,

and vi · bi 6= 0. Then we claim that b1, . . . , br are linearly independent. Suppose
that c1b1 + . . . crbr = 0. Then dotting both sides with vi shows that ci = 0, so
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the bi are linearly independent and thus the matrix has rank r meaning that
the dimension of (IZ)d is m− r as required.

The previous proof can certainly be improved. Besides the Nullstellensatz,
this is the first lengthy argument we’ve had to do. What is important in this
definition is the statement, and not the proof. To illustrate its use, we give some
examples. We will draw all the sets of points in the affine plane (it’s impossible
to do otherwise), but it is understood they are in P2.

Figure 6: Two sets of points; only the first imposes independent conditions on
forms of degree one.

Example: We first consider the two sets in Figure 6. The first set imposes
independent conditions on forms of degree 1. To see this, remove any point.
Then there is a line (a form of degree 1) passing through the other two but not
the point you removed. Thus the first set imposes independent conditions on
forms of degree one.

The second set does not impose independent conditions on forms of degree
1 because to draw a line through two points, the line will also contain the third.

We make the note that both sets impose independent conditions on forms
of degree 2. To see this, just remove a point and draw a line through each of
the remaining points so that it does not intersect the third. The union of these
two lines is a conic.

Example: Consider the two sets in Figure 7. Neither imposes independent
conditions on forms of degree 1 (this is clear), and from Figure 8 it is clear that
the second set imposes independent conditions on forms of degree two.

To see that the first set does not, we will have to use Bézout’s Theorem.
Indeed, remove one of the four points lying on the line. Suppose that C is
some form of degree two passing through the other 4 points. Then it must pass
through the other 3 points on the line. But this would imply that the form of
degree 2 meets the line in 3 points. By Bézout’s Theorem this means that the
conic must have a line as a component, and thus we cannot avoid the point we
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removed. Finally, it is easy to see that both sets in Figure 7 impose independent
conditions on forms of degree 3.

Figure 7: Two sets of points; Neither imposes independent conditions on forms
of degree one, and only the second imposes independent conditions on forms of
degree two

Figure 8: Some illustrations showing that the second set in Figure 7 imposes
independent conditions on forms of degree two

In these two examples we came across a very useful fact which we state in
the next proposition.

Proposition 26. Let Z be a set of points in P2 that imposes independent con-
ditions on forms of degree d. Then Z also imposes independent conditions on
forms of degree d + 1.

Remark: This proposition along with induction shows that once a set starts
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imposing independent conditions, it does so thereafter. Thus once we get inde-
pendent conditions, we know how to compute dim(IZ)d thereafter.

Proof. To show that Z imposes independent conditions on forms of degree d+1,
pick any point p ∈ Z. Since Z imposes independent conditions on forms of
degree d, we know there exists a form of degree d (call it C) that passes through
all of Z except the point P . Now just take a line L not passing through p and
the union L∪C is a form of degree d+1 not passing through p as required.

We end this section by reviewing the progress that we have made on com-
puting dim(IZ)d. Originally our only method was to solve a system of equations
and look at the dimension of the vector space. We next found a nice geometric
condition that tells us when a set of points imposes independent conditions.
Finally, we found that once a set imposes independent conditions, it does so
henceforth.

6 Hilbert Functions of Points and Ideals

In this section we plan to compute what is known as the Hilbert function of a
set of points, and then in general we will define what we mean by the Hilbert
function of an ideal. We begin with an example from the previous section.

Let Z be a set of 5 points in P2, four of them collinear. (e.g. the situation
in the first set of Figure 7. We will compute s(d) =dim(IZ)d for a few values of
d.

If d = 0, then s(d) = 0 as usual. Since the points are not all collinear,
s(1) = 0 as well. The computation of s(2) is much more interesting. Let C be
any conic vanishing on Z. Then by Bézout’s Theorem we know it must contain
the line L through the 4 points as a factor. To get the other factor, we can
multiply L by any line passing through the 5th point. Lines are of the form
AX + BY + CZ and the one point will clearly impose one condition so we still
have two degrees of freedom. Thus, s(2) = 2. Finally, we know that Z imposes
independent conditions on forms of degree 3 and higher, so s(d) =

(
d+2
2

)
− 5 for

all d ≥ 3. Thus we can make the following table:

degree (d) 0 1 2 3 4 5 6 7
dim(Rd) 1 3 6 10 15 21 28 36

s(d) 0 0 2 5 10 16 23 31
dim(Rd)− s(d) 1 3 4 5 5 5 5 5

The bottom row of the table represents the difference between the dimension of
Rd and the dimension of the subspace vanishing on Z. Thus it represents how
much smaller (IZ)d is than Rd. This difference is very important and it is called
the Hilbert Function.
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Figure 9: Some various arrangements of 5 points

Definition 30. Let Z be a finite set of points in Pn. The Hilbert Function of
Z is the sequence {HZ(i)}∞i=0 where

HZ(d) = dim(Rd)− dim(IZ)d =
(

d + n

n

)
− dim(IZ)d.

Homework 35. Compute the Hilbert function of for each of the sets of points
in Figure 9.

Homework 36. Compute the Hilbert function of d collinear points in P2.

In general, computing the Hilbert function of a set of points is highly nontriv-
ial. The function is extremely dependent on the geometry of the set of points.
For instance, if the points are all collinear, it is easy to compute the function.
In general, this is not the case. To illustrate why this is not the case consider
the following. Suppose you had 9 points in P2 and you were wondering if they
imposed independent conditions on forms of degree 3. Thus you ask if there is
a cubic passing through any 8 of them, but not the ninth? Just glancing at the
points, you cannot say as we have the following classical theorem.

Proposition 27. (Cayley Bacharach) Let C and D be two cubic curves in
P2 intersecting in 9 points. (As in Figure 10.) Then any cubic curve passing
through 8 of these points passes through the ninth as well.

Thus it is not so easy to tell when a set of points imposes independent
conditions. For nine points the answer is no if they lie on two distinct cubic
curves! One should not abandon hope, however. Although it may be very
difficult to compute the entire Hilbert Function, as you may have noticed in the
homework computations, eventually the function levels off and remains constant.
In fact it is constantly equal to the number of points!

Proposition 28. Let Z be a set of r points in P2. Then HZ(d) = r for all
d ≥ r − 1. Furthermore, this is the best lower bound we can achieve.
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Figure 10: Two cubics intersecting in 9 points

Proof. We note that Z imposes independent conditions on forms of degree r−1
since removing any one point p, we can just draw lines through the remaining
r − 1 point, carefully avoiding p. Their union is a form of degree r − 1. To see
this is the best lower bound, note that the Hilbert Function of r collinear points
is HZ(d) = d + 1 if d < r and r afterwards.

This theorem has a beautiful application, using it we will be able to give
a two line proof of Bézout’s Theorem. We will later find a convenient way
to compute the Hilbert function of the intersection of two curves. Since this
will be a set of points, we can simply see where it levels off and that will give
us the number of intersection points. To do this, we will need more algebraic
machinery, however. In the meantime, here’s another interesting fact about
Hilbert functions.

Proposition 29. If Z is a set of points in P2 then for any t, hz(t) ≤ hz(t+1).
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