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1 Introduction

Recall that algebraic geometry is the study of objects which are or locally re-
semble solution sets of polynomial equations.1 To better understand an object,
it is helpful to examine its behavior both at points in affine space and at ”infin-
ity.” The points in affine space, An, together with additional points at infinity
make up the projective space Pn. Alternatively, Pn can be thought of as the
set of lines through the origin in An+1, written as the set of equivalence classes
{[x0, x1, . . . , xn]}. Two points [x0, x1, . . . , xn] and [y0, y1, . . . , yn] are equivalent
if and only if [x0, x1, . . . , xn] = [λy0, λy1, . . . ,λyn] for some scalar λ.

In affine space, we call the common solution set of a collection of polyno-
mials {f1, f2, . . . , fn} an affine algebraic variety, denoted V(f1, f2, . . . , fn). In
projective space, polynomials must be homogeneous in order to be well-defined
on each line through the origin. The vanishing locus of a collection of homoge-
neous polynomials is a projective variety. Given any affine variety V ⊂ An, we
can take its projective closure V ⊂ Pn, the smallest projective variety containing
it.

While many varieties are smooth, many more have singular points such as
nodes or cusps. By studying an object in projective space, it may be possible to
view a copy of the object without its singular points. Given a variety W ⊂ An,
we would like to be able to map W to a smooth variety V in the product space
An × Pn−1, where W is isomorphic to V almost everywhere. A useful method
for removing singularities from an algebraic variety is called blowing up. For
example, the curve V = V(y2 − x2 − x3) has a singular point at the origin,
which can be resolved as in Figure 1.

The curve B is called the blowup of V at the origin. Notice that B crosses the
z-axis in exactly two points, corresponding to the two lines tangent to V at the
origin. It may be helpful to think of the blowup B as being a 3D-parametrization
of the original curve, where as z = t increases, the curve inclines upward and
hence never crosses itself at the origin. In this paper we will explain the blowup
process and other known methods of removing singularities, ending with a major
result in birational geometry proven by Heisuke Hironaka.

1For an introduction to algebraic geometry, including basic concepts and many of the ideas
discussed in this paper, see [4].
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Figure 1: Blowup of V at the Origin

2 Birational Morphisms

The mapping between a variety and its blowup is a type of map called a bira-
tional morphism, a map similar to an isomorphism. Before we define the map,
we first introduce a topology on Pn. We will use the new topology to define a
more general category of varieties.

Definition 1. Let the complements of projective varieties in Pn form a collec-
tion of open sets. Then they define a topology on Pn: the Zariski topology.

Note that every projective variety is hence a closed set, while the varieties
Pn = V(0) and ∅ = V(λ), where λ is a constant polynomial, are both open and
closed.

Definition 2. A quasi-projective variety V is a Zariski-locally closed subset of
Pn, i.e. any intersection of an open set with a closed set.

The set of quasi-projective varieties includes all affine varieties, all projective
varieties, and all their Zariski-open subsets. For example, the set A1 \ {0} is
not an affine algebraic variety, but it is an open subset of A1 (the complement
of the variety V(x, y)) and hence a quasi-projective variety.

Definition 3. A morphism of quasi-projective varieties π : V −→ W is called
a birational morphism if there exists a dense open set U ⊂ V such that π is an
isomorphism on U .

Example 4. An example of a birational morphism is the blowup map π pro-
jecting the curve B onto V = V(y2 − x2 − x3) in Figure 1. There is a clear
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bijection between points in the open, dense set V \ {0} and their preimages in
B. The preimage of the origin is the set of two points where B crosses the
z-axis.

3 The Blowup of An at a Point p

We have just seen an example of a blowup of a variety, V , at the origin. Let us
define the blowup of affine space, An, at a point p.

The primary goal while blowing up at p is to leave An essentially unchanged
at every point except at p, where we will replace p with an entire copy of
Pn−1 (hence the term blowing up!). Thus every line through the origin in An

(i.e. any possible line tangent to a variety) can be associated with a unique
corresponding point in Pn−1, thereby separating the lines through p in a very
natural way. While blowing up, we can assume that p is the origin (O) by
applying an appropriate change of coordinates.

Most points from which we will blow up a variety will be singularities:

Definition 5. Let V = V(f1, f2, . . . , fm) ⊂ An. A singularity, or singular point,
of V is a point p such that the Jacobian matrix




∂f1
∂x1

. . . ∂f1
∂xn

. . .
∂fm

∂x1
. . . ∂fm

∂xn



 (p)

has rank strictly less than min(m, n).

For a variety of a single polynomial V(f), the definition of a singular point
above is equivalent to the requirement that all partial derivatives vanish at a
singular point. To begin constructing the blowup at a point, we define the
blowup surface:

Definition 6. Let the blowup surface B be the set of all pairs consisting of a
point q in An and a line from q through the origin of An. Note that B is in the
product space An × Pn−1. Thus we have

B =
{

(q, #q) | q ∈ An
}
⊂ An × Pn−1.

Proposition 7. If (x1, x2, . . . , xn; y1 : y2 : . . . : yn) are coordinates of An ×
Pn−1, then B is the quasi-projective variety

V(xiyj − xjyi | 0 ≤ i < j ≤ n) ⊆ An × Pn−1.

Proof. The point x = (x1, x2, . . . , xn) ∈ An lies on the line $ = [y1 : y2 : . . . :
yn] ∈ Pn−1 if and only if ((x1, x2, . . . , xn) is a multiple of ((y1, y2, . . . , yn). That
is, x lies on $ if and only if the matrix

[
x1 . . . xn

y1 . . . yn

]

3



has rank ≤ 1. As we have seen before, this matrix has rank ≤ 1 if and only if
every 2× 2 minor vanishes, i.e. xiyj − xjyi = 0 for every i,j.

Definition 8. The blowup of An at O is the space B together with the projec-
tion map

π : B −→ An

(q, #q) )−→ q.

Note that π generates a one-to-one correspondence between a point q and
the ordered pair (q, #q) for every point q *= O. Thus, π is an isomorphism on
the open, dense set An \ {O}. The preimage of O is {O} × Pn−1, which is
isomorphic to Pn−1. Looking back to the picture, π−1(O) consists of all points
in the vertical line above O (in this case the z-axis). The set π−1(O) is called
the exceptional divisor of the blowup. Each line through the origin intersects
the exceptional divisor at exactly one point, and hence the blown-up curve
intersects the exceptional divisor exactly once for every time the original curve
passes through the origin.

We can also denote the space B by BO(An). Note that the defining equations
for BO(An) are the 2× 2 minors of the matrix above.

4 The Blowup of an Arbitrary Affine Variety

Using the previous blowup space B and projection map π, we can generalize
the blowup of An to the blowup of an arbitrary affine algebraic variety V .

Definition 9. Given any affine algebraic variety V ⊂ An and any point p ∈ V ,
the blowup of V at p is Bp(V ), the Zariski-closure of π−1(V \{p}) in B, together
with the projection π.

Again, π restricted to the open, dense set Bp(V )\{π−1(p)} is an isomorphism
onto V \ {p}, and thus π is a projective birational morphism.

Example 10. Take, for example, the blowup of the curve V = V(y2 − x2 −
x3) at the origin as above. Note that the two visible lines tangent to V at
(0, 0) are mapped to distinct points in Pn−1, and hence the blown-up curve
has no singularity at the origin. The defining equations for Bp(V ) are the
defining equations for B together with the defining equation(s) of V . These will
necessarily be the defining equations for the blowup of any affine variety V .

The defining equations y2 = x2 + x3 and xw = yz can be used to derive
a parametrization of the blowup B in affine 3-space, as graphed in Figure ??.
Since the blowup is a set of points in P1 × A2, we must examine the blowup
in an affine coordinate chart, the set of points where one coordinate is never
zero. Look at the set of points satisfying y2 = x2 + x3, xw = yz, and z *= 0.
Since dividing each coordinate by z now makes no difference in projective space,
assume z = 1. Then y = xw, and we have

(xw)2 = x2(x + 1),
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Figure 2: The Cuspidal Cubic: V = V(y2 − x3)

x2(w2 − x− 1) = 0.

For all x *= 0, x = w2 − 1. When x = w2 − 1,

x2 + x3 = (w2 − 1)2 + (w2 − 1)3

= w2(w2 − 1)2.

By taking the positive square root we obtain

y = w(w2 − 1).

The equations for x and y in terms of w yield a parametrization of B in
affine space:

x )→ w2 − 1, y )→ w(w2 − 1), z )→ w,

which is a smooth curve isomorphic to y2 = x2 + x3 at every point except the
origin, as in the curve graphed above.

Example 11. Look at the variety defined by the equation for the cuspidal
cubic: V = V(y2 − x3) in Figure 2. The blowup B(0,0)(V ) is defined by the
equations y2 = x3 and xw = yz. In the coordinate chart where z is nonzero,
y = xw and we have that

(xw)2 = x3,

x2(w2 − x) = 0.

Then for all nonzero x, x = w2 and y = +
√

(w2)3 = w3. Therefore B(0,0)(V )
can be parametrized by the map

x )→ w2, y )→ w3, z )→ w

which is again a smooth curve, birationally equivalent curve in affine 3-space as
pictured in Figure 3.

Example 12. Blowups can also be used to resolved singular points of a surface,
as in the singularity at the origin of the cone V = V(x2 + y2− z2). The blowup
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Figure 3: Blowup of V at the Origin

B = BO(V ) is a subset of A3 × P2. If A3 has coordinates (x, y, z) and P2 has
coordinates [t : u : v], then B has the following defining equations:

xu− ty = 0 x2 + y2 = z2

yv − uz = 0 t2 + u2 = v2

xv − ty = 0.

On the coordinate chart v = 1, the equations reduce to the following:

y = uz

x = ty

x2 + y2 = z2.

Only three equations are necessary, since the remaining two are now super-
fluous. After eliminating the variables x and y, the set of points in A5 satisfying
the three equations above is isomorphic to the cylinder {(z, t, u) | t2 + u2 = 1},
which is birationally equivalent to the original cone V . Note that lines through
the origin in V are mapped to corresponding lines on the cylinder, of which no
two intersect.

The cone V had a finite number of singular points, in fact only one at the
origin, but a surface in A3 or a higher dimensional space can easily have an
infinite number of singular points. For example, the variety V(y2 − x3) ⊂ A3

has a singularity at every point of the form (0, 0, z). Blowing up such a variety
one point at a time will likely never generate a smooth curve. However, for a
curve in A2, blowing up point by point is a successful method:

Theorem 13. For any affine variety V ⊂ A2, the singularities of V can be
resolved by blowing up the curve at finitely many points.
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The proof requires the following two lemmas:

Lemma 14. An irreducible affine variety V ⊂ A2 has finitely many singular
points.

Proof of Lemma 14. Without loss of generality, let V = V(f) ⊂ A2. A point
p ∈ V is singular if both ∂f

∂x and ∂f
∂y vanish at p. If f has infinitely many singular

points, then f and ∂f
∂x are two polynomials which share infinitely many solutions,

therefore they must have a common factor. (If f and ∂f
∂x were relatively prime

in A2, they would necessarily intersect at deg(f) ∗ deg(∂f
∂x ) points in P1.) Since

f is irreducible, f |∂f
∂x . Likewise f |∂f

∂y . Since f has larger degree than either
partial derivative,

∂f

∂x
=

∂f

∂y
= 0.

Therefore f must be a constant function with no singular points, contradicting
our assumption.

Lemma 15. If V = V(f) ⊂ A2 is an affine variety, the blowup Bp(V ) is
nonsingular at p.

Proof of Lemma 15. The blowup Bp(V ) = V(f(x, y), xz−yw) is nonsingular at
p if and only if the Jacobean matrix

[∂f
∂x

∂f
∂y 0 0

z −w x −y

]

has rank less than or equal to codim V = 1. Since p is a point in projective
space, at least one coordinate of p must be nonzero, therefore B is nonsingular
at p.

Proof of Theorem. Let V have singular points p1, p2, . . . , pm. The blowup of
V at p1, denoted Bp1(V ) generates a corresponding projective birational map
π1 : Bp1(V ) −→ V . The curve Bp1(V ) is necessarily nonsingular at the points
π−1

1 (p1). However, note that since π1 is an isomorphism on Bp1(V ) \ p1, the
points π−1

1 (p2), . . . ,π−1
1 (pm) are singular in Bp1(V ). Let Bp1(V ) = B1(V ),

Bπ−1
1 (p2)

(Bp1(V )) = B2(V ), etc. Then successive blowups yield the following
projective birational maps defined on them:

π2 : Bπ−1
1 (p2)

(B1(V )) −→ B1(V )

π3 : Bπ−1
2 (p3)

(B2(V ))
)
−→ B2(V )

...
πm : Bπ−1

m−1(pm)(Bm−1(V )) −→ Bm−1(V ).
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Figure 4: V
(
(y2 − (x− 1)3)(y2 + (x + 1)3)

)

Since the blowups have been chosen to remove singularities at each point pi,
Bm(V ) is entirely nonsingular. Finally, the composition of projective maps

f = π1 ◦ π2 ◦ . . . ◦ πm : Bm(V ) −→ V

is a projective birational morphism on the open, dense set Bm(V )\f−1(p1, p2, . . . , pm).

Example 16. For example, the variety V = V
(
(y2 − (x− 1)3)(y2 + (x + 1)3)

)

in Figure 4 has two singular points, one at (−1, 0) and the other at (1, 0). The
blowup B(1,0)(V ) is the union of two curves: one isomorphic to the variety
V

(
y2 + (x + 1)3

)
, the other isomorphic to the smooth variety A1. One half

of the blowup, B(1,0)(V(y2 − (x − 1)3)), is pictured in Figure 5. Blowing up
B(1,0)(V ) at the second singular point (−1, 0) yields the union of two new curves
which are now each isomorphic to A1.
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Figure 5: Blowup of V(y2 − (x− 1)3) at (1, 0).
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The smooth variety obtaining by blowing up a curve at its singular points
is a type of resolution of singularities.

Definition 17. Let W be a quasi-projective variety. A resolution of sin-
gularities of W is a smooth variety V together with a birational morphism
π : V −→ W , where π is an isomorphism above the nonsingular locus of W .

5 Normalization

Blowing up is a very geometric process: no algebra is required beyond simple
polynomial equations. Thus it is not surprising that singularities can also be
resolved using a purely algebraic method. For any affine variety V , the process
of obtaining a smoother, birationally equivalent variety is called normalization.

In order to define a normal affine variety, we first define a normal ring.

Definition 18. Let R be an integral domain with field of fractions K. Let f be
any monic polynomial in R[x]. If every root a/b ∈ K of f is also in the original
domain R, then R is normal.

For example, the domain Z is normal. Z has field of fractions Q, but any
rational root of a monic polynomial in Z[x] must be an integer. Since C is a
field, C is normal.

Now we can define the related concept of a normal variety:

Definition 19. An irreducible affine variety is normal if it has a normal co-
ordinate ring. A reducible affine variety, which can be written as a union of
irreducible subvarieties, is normal if each irreducible subvariety is normal. An
arbitrary quasi-projective variety is normal if every point is contained in some
normal affine variety.

Since An is a smooth space, ideally it should be considered normal un-
der our definition. Note that the coordinate ring of An, the polynomial ring
C[x1, x2, . . . , xn], is a member of a family of rings called unique factorization
domains.

Definition 20. An integral domain R is a unique factorization domain (UFD) if
every nonzero, nonunit element can be completely factored as a unique product
of elements in R.

Theorem 21. Every unique factorization domain is normal.

Proof. Let R be a unique factorization domain with field of fractions K. If
x ∈ K, x can be written uniquely as the irreducible fraction a/b, where a, b ∈ R.
Let f = xn + cn−1xn−1 + . . . + c0 be any monic polynomial in R[x]. If a/b is a
root of f , then

(a/b)n + cn−1(a/b)n−1 + . . . + c0 = 0

and
an + cn−1a

n−1b + . . . + c0b
n = 0.
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Note that an can now be written as a sum of terms, each divisible by b. Thus
b|an and a and b must share a factor, contradicting the irreducibility of a/b.

Now since C[x1, . . . , xn] is a unique factorization domain, C[x1, . . . , xn] is
normal. Hence An is normal as an affine variety, and Pn is a normal as a
quasi-projective variety (because it can be covered by n copies of An).

Example 22. Not every variety is normal. The curve V = V(y2 − x3), the
cuspidal cubic, has coordinate ring C[x, y]/(y2 − x3) - C[t2, t3] = C(V ). The
fraction t3/t2 = t is a root of the polynomial x2 − t2 in C(V )[x], but t /∈ C(V ).
Therefore C(V ) is not normal as a ring, and V cannot be a normal variety.

Any variety can be made normal by a process called normalization. Given
any affine algebraic variety V , we see that in order for V to be normal, it
must have a normal coordinate ring. Fortunately, any commutative ring can be
normalized as follows:

Definition 23. Let R be a commutative ring with identity. Then RN , the
normalization of R, is the set of all ”rational” polynomial solutions in R[x], i.e.
the elements of the field of fractions of R which satisfy any monic polynomial
with coefficients in R.

We can now define the normalizations of affine and quasi-projective varieties:

Definition 24. Let V be an irreducible affine variety with coordinate ring C(V ).
The normalization of V is the variety W with coordinate ring C[W ] = C(V )N ,
together with a birational map f : W −→ V . If V is a reducible affine variety,
then V can be written as a union of irreducible subvarieties. The normal variety
W is the union of the normalizations of the irreducible subvarieties.

Example 25. For example, the variety V = V(y2 − x3) has coordinate ring
C(V ) - C[t2, t3], which is not normal. Note that t is a root of the equation
x2−t2 in C(V )[x]. Therefore t, and every element of C[t], is in the normalization
of C[t]. Since C[t] is a unique factorization domain, C[t] is normal. Therefore
C[t] is the normalization of C[V ] and A1 is the corresponding normal variety,
with birational map

f : A1 −→ V

t )→ (t2, t3).

For an affine variety V , the normalization of V clearly exists. C(V )N , the
normalization of C(V ), is isomorphic to C[x1, x2, . . . , xn]/I for some ideal I,
where I generates the normal variety W = V(I). It is not obvious that W is
affine.2

Definition 26. Let V be an arbitrary quasi-projective variety. The normaliza-
tion of V is a normal variety W together with a birational morphism f : W −→

2The proof requires a significant amount of abstract algebra. For a proof see page 129 of
[3]
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V such for any other normal variety U and dominant morphism g : U −→ V ,
there is a unique map φ : U −→ W where g = f ◦ φ. 3

It is not obvious that the normalization of a quasi-projective variety ex-
ists, nor that the normalization of a quasi-projective variety will also be quasi-
projective.4

In the example above, V = V(y2 − x3), normalizing V effectively removed
its singular point at the origin, creating a smooth variety isomorphic to A1. In
fact, normalization resolves the singularities of any curve in the affine plane.
The proof relies on the following lemma:

Lemma 27. In a normal variety, the set of singular points has codimension
≥ 2.5

By the lemma, the set of singular points of any normal variety in V ⊂ A2

must have dimension 0. That is, the normalization of V must be nonsingular.
We now have the following theorem:

Theorem 28. For an affine variety V ⊂ A2, the normalization of V is non-
singular.

6 General Blowups and Hironaka’s Theorem

Both blowing up and normalization are effective ways to resolve singularities
on affine curves, but blowing up can be generalized to resolve singularities of
more general quasi-projective varieties. In order to define the general blowup of
a variety, we first need to define rational maps and graphs.

Definition 29. Let U1, U2 be open, dense subsets of a quasi-projective variety
V . Two morphisms of quasi-projective varieties φ1 : U1 −→ W and φ2 : U2 −→
W are equivalent if they agree on the intersection U1 ∩ U2 ⊂ V .

Definition 30. An equivalence class of such morphisms is called a rational
map, denoted φ : V !!" W .

Note that a rational map is not actually a map (hence the dashed arrow
notation), and the composition of two rational maps is not always well-defined!
In fact, the composition of rational maps φ ◦ ψ is only well-defined when the
image of ψ is dense.

Definition 31. If χ : U −→ W is any map, the graph of χ is the set

Γχ = {(x,χ(x))|x ∈ U} ⊂ U ×W.

3g is dominant when its image g(U) is dense in V .
4For a proof, see page 131 of [3]
5For a proof, see page 127 of [3]
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Definition 32. Given a rational map φ : V !!" W and a representative of the
equivalence class χ : U −→ W , the graph of φ is the closure of the graph of χ:

Γφ = {(x,χ(x))|x ∈ U} ⊂ U ×W.

Example 33. For example, we can blow up An at the origin using our new
terminology. Let f be the map

An \ {O} −→ Pn−1

(x1, x2, . . . , xn) )−→ [x1 : x2 : . . . : xn].

The graph Γf is the set

{(x, f(x))} ⊂
{

An \ {O}
}
× Pn−1.

Taking the closure of Γf in the space An × Pn−1 yields the set

B =
{

(q, #q) | q ∈ An
}
⊂ An × Pn−1

}
,

our blowup space in the original example. Now we can identity the original
blowup BO(An) with the graph of the rational map

An !!" Pn−1

(x1, x2, . . . , xn) )−→ [x1 : x2 : . . . : xn].

Definition 34. Let V = V(f1, f2, . . . , fn) be a quasi-projective variety in Pn,
where f1, f2, . . . , fn are homogeneous polynomials. Let f be the rational map

f :V !!" Pn−1

x )−→ [f1(x) : f2(x) : . . . : fn(x)].

The graph Γf of the map f and the projection map π : Γf −→ V make up the
blowup of V along the ideal I = (f1, f2, . . . , fn), denoted BI(V ).

In fact, for any quasi-projective variety V , there is some ideal I such that
BI(V ) is nonsingular.

Theorem 35 (Hironaka’s Theorem). Let V be an arbitrary quasi-projective
variety. Then there exist polynomials f1, f2, . . . , fn such that the graph Γφ of
the rational map

φ :V !!" Pn−1

x )−→ [f1(x) : f2(x) : . . . : fn(x)]

(together with its projection onto V ) is a resolution of singularities of V .
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The proof of Hironaka’s Theorem is complex, and as much research is being
done toward understanding and refining the proof as toward generating new
theorems. Rather than prove the theorem for quasi-projective varieties, Hiron-
aka proves a more general statement resolving the singularities of ideal sheaves.
What is an ideal sheaf?

An ideal sheaf is a subset of the structure sheaf of a variety. If V is a variety
with coordinate ring C[V ], and U is an open subset of V containing x, let Ox be
the ring of rational fuctions f/g with f, g ∈ C(U). Let Ox(U) be the intersection
of all Ox with x ∈ U , i.e.

OV (U) =
⋂

x∈U

Ox.

Then the structure sheaf of V is the relation associating each open set U ⊂ V
with the ring OV (U).

Now let W ⊂ V be a closed subset of V . For every open set U ⊂ V , there is
a set of polynomials which vanish on the intersection of W and U ,

IW (U) =
{
f ∈ OV (U) | f(W ∩ U) = 0

}
.

An ideal sheaf associates every open subset U with the set IW (U). The concept
corresponding to a nonsingular variety is a monomial ideal sheaf, an ideal sheaf
locally generated by a single monomial. Thus the goal of the proof of Hironaka’s
Theorem is to transform an ideal sheaf into a locally monomial one via successive
blowups.

For Hironaka’s proof, see [1]. For an accessible paper explaining the key
ideas of the proof, see lecture notes on the theorem written by János Kollár, [2].
Hironaka’s Theorem is a key result in modern algebraic geometry. A current
problem related to the theorem is the attempt to classify all quasi-projective
varieties (up to birational equivalence). Hironaka’s Theorem has reduced this
problem to the much smaller attempt to classify all smooth projective varieties.
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