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Introduction

Goals

At The End of This Talk, You Should Know:

The set of points on a non-singular, irreducible cubic plane
curve can be formed into an abelian group.
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Cubic Plane Curves.

A cubic plane curve is the set of solutions in R2 to an equation
of the form:

ax3 + bx2y + cxy2 + dy3 + ex2 + fxy + gy2 + hx + iy + j = 0
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Cubic Plane Curves

Special Types of Cubics.

Irreducible Cubic: A cubic whose equation cannot be
factored.
Non-Singular Cubic:

A cubic is singular at a point (a, b) if:

∂P
∂x

(a, b) = 0 and
∂P
∂y

(a, b) = 0.

A cubic is non-singular if it has no points of singularity.
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Definition of an Abelian Group.

An abelian group is a set of elements, G, together with an
operation, +, such that the following properties hold:

1 There is an identity element.
2 Each element has an inverse.
3 Addition is associative.
4 Addition is commutative.
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The Group Law.

Addition of Points

At The End of This Talk, You Should Know:

We will show that the set of points of C, where C is a
non-singular, irreducible cubic, is an abelian group.
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The Group Law.

Well-Definiedness of Addition of Points.

Is Addition of Points is Well-Defined?

We might worry that addition of points is not well-defined.
What if the line between P and Q does not intersect C at a
third point?
What if the line between P and Q intersects C at two
additional points?
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The Group Law.

Well-Definiedness of Addition of Points.

Yes! Addition of Points is Well-Defined.

Theorem
Let l be a line that intersects an irreducible cubic C at least
twice, counting multiplicities. Then l intersects C exactly three
times, counting multiplicities.

A line tangent to C at a point P intersects C twice at P.
A line tangent to C at an inflection point P intersects C
three times at P.
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The Group Law.

The Properties of an Abelian Group Are Satisfied.

There Is An Identity.
There exists an O on C such that P + O = P for all P on C.

We will show that O is the identity. We must show that
P + O = P for all P.



Don’t Stop Believin’

The Group Law.

The Properties of an Abelian Group Are Satisfied.

There Is An Identity.
There exists an O on C such that P + O = P for all P on C.

We will show that O is the identity. We must show that
P + O = P for all P.



Don’t Stop Believin’

The Group Law.

The Properties of an Abelian Group Are Satisfied.

There Is An Identity.
There exists an O on C such that P + O = P for all P on C.

We will show that O is the identity. We must show that
P + O = P for all P.



Don’t Stop Believin’

The Group Law.

The Properties of an Abelian Group Are Satisfied.

There Is An Identity.
There exists an O on C such that P + O = P for all P on C.

We will show that O is the identity. We must show that
P + O = P for all P.



Don’t Stop Believin’

The Group Law.

The Properties of an Abelian Group Are Satisfied.

There Is An Identity.
There exists an O on C such that P + O = P for all P on C.

We will show that O is the identity. We must show that
P + O = P for all P.



Don’t Stop Believin’

The Group Law.

The Properties of an Abelian Group Are Satisfied.

There Is An Identity.
There exists an O on C such that P + O = P for all P on C.

We will show that O is the identity. We must show that
P + O = P for all P.



Don’t Stop Believin’

The Group Law.

The Properties of an Abelian Group Are Satisfied.

Inverses Exist.
For every P on C, there is a −P on C such that P + (−P) = O.

Given a point P on C, we construct −P in the following manner:



Don’t Stop Believin’

The Group Law.

The Properties of an Abelian Group Are Satisfied.

Inverses Exist.
For every P on C, there is a −P on C such that P + (−P) = O.

Given a point P on C, we construct −P in the following manner:



Don’t Stop Believin’

The Group Law.

The Properties of an Abelian Group Are Satisfied.

Inverses Exist.
For every P on C, there is a −P on C such that P + (−P) = O.

Given a point P on C, we construct −P in the following manner:



Don’t Stop Believin’

The Group Law.

The Properties of an Abelian Group Are Satisfied.

Inverses Exist.
For every P on C, there is a −P on C such that P + (−P) = O.

Given a point P on C, we construct −P in the following manner:



Don’t Stop Believin’

The Group Law.

The Properties of an Abelian Group Are Satisfied.

Inverses Exist.
For every P on C, there is a −P on C such that P + (−P) = O.

Given a point P on C, we construct −P in the following manner:



Don’t Stop Believin’

The Group Law.

The Properties of an Abelian Group Are Satisfied.

Addition is Commutative.
For every P and Q on C, P + Q = Q + P.

We must show that P + Q = Q + P. But this is clear, since the
line between P and Q is the same as the line between Q and P.
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The Group Law.

The Properties of an Abelian Group Are Satisfied.

Associativity.
The Cayley-Bacharach Theorem.

Theorem
Let C1 and C2 be two cubic curves which intersect in exactly
nine points. Suppose C is a third cubic curve which passes
through eight of these nine points. Then C also passes through
the ninth point.
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The Group Law.

The Properties of an Abelian Group Are Satisfied.

Associativity.
For all P, Q, and R on C, (P + Q) + R = P + (Q + R).
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Mordell’s Theorem

The Set of Rational Points Is a Group Too.

We have shown that the set of points on an irreducible,
non-singular cubic is an abelian group.
It is also true that the set of rational points on a rational,
irreducible, non-singular cubic with at least one rational
point is an abelian group.

A rational cubic is one whose equation can be written in the
form

ax3 + bx2y + cxy2 + dy3 + ex2 + fxy + gy2 + hx + iy + j = 0

Where a, b, c, d , e, f , g, h, i , and j are rational numbers.
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Mordell’s Theorem.

Mordell’s Theorem: The set of rational points on a rational,
irreducible, non-singular cubic with at least one rational
point is a finitely-generated abelian group.
There is a set of rational points, P1, ..., Pn, such that if Q is
a rational point on C, we can write:

Q =
n∑

i=1

niPi .
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An Example

Mordell’s Theorem Is Useful In The Real World.

Here is a real-world example of how Mordell’s Theorem is
useful:
Let’s say you are LOST on an island ...
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You wake up:
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You try P2 + P2:



Don’t Stop Believin’

Conclusion

An Example

LOST

You try P2 + P2:
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LOST

And you find the hatch!
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Open Questions

Open Questions.

Given a cubic, which are the rational points which
compose this finite generating set?
Given a cubic, what is the minimum number of points
needed in a finite generating set?
It is not yet known how to determine in a finite number of
steps whether a given cubic has a rational point at all.
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AND

DON’T STOP BELIEVIN’
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