### Toric Graph Ideals

### Bryan Brown, Laura Lyman, Amy Nesky

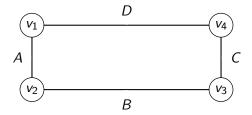
Berkeley RTG

July 31st, 2013

Bryan Brown, Laura Lyman, Amy Nesky (Bei

Toric Graph Ideals

k is a field. Let G denote the following graph.

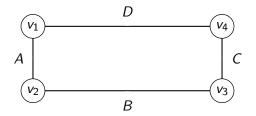


Define the homomorphism  $\phi_{G}: k[A, B, C, D] \rightarrow k[v_1, v_2, v_3, v_4]$  by

$$A\mapsto v_1v_2$$
  $B\mapsto v_2v_3$   $C\mapsto v_3v_4$   $D\mapsto v_4v_1$ .

$$Im(\phi_G) = k[v_1v_2, v_2v_3, v_3v_4, v_4v_1].$$

# Introduction (cont.)

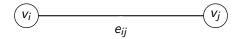


$$\phi_{G}(AC - BD) = 0$$

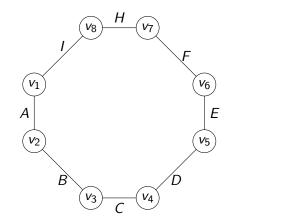
- In fact, it is easy to show that  $ker(\phi_G) = \langle AC BD \rangle$ .
- We call this ideal,  $ker(\phi_G)$ , the Toric Ideal of the graph G.

### Definition

Let G = (V, E) be an undirected graph. We can define the map  $\phi_G : k[E] \rightarrow k[V]$  by  $e_{ij} \mapsto v_i v_j$  as shown below. The ideal ker $(\phi_G)$  is called the **Toric Ideal** associated to G and is denoted  $I_G$ .



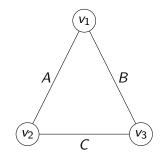
### An Even Cycle



 $\phi_G(ACEH - BDFI) = v_1 v_2 v_3 v_4 v_5 v_6 v_7 v_8 - v_2 v_3 v_4 v_5 v_6 v_7 v_8 v_1 = 0$ 

- - E

э



Let's try to find a non-zero element in the toric ideal

$$AB \cdots - C \cdots$$

For this graph, the toric ideal is... is..

hm..

trivial? What happened here?

### Proposition

 $I_G$  is a homogeneous ideal generated by the following binomials which correspond to closed even walks of the graph:

$$B_{w} = \prod_{j=1}^{k} e_{2j-1} - \prod_{j=1}^{k} e_{2j}$$

$$w: w_1 \xrightarrow{e_1} w_2 \xrightarrow{e_2} \dots \xrightarrow{e_{2k-2}} w_{2k-1} \xrightarrow{e_{2k-1}} w_{2k} \xrightarrow{e_{2k}} w_1$$
$$\xrightarrow{w_i \in V, e_i \in E}$$

Bryan Brown, Laura Lyman, Amy Nesky (Bei

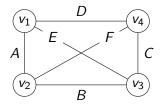
### Definition

If  $\langle s_1, ..., s_n \rangle = I$ , then we say it is a **minimal generating set** if no subset of it generates I.

Notation:

 $\mathcal{M}_{\textit{G}}$  - any minimal generating set

# An Example: The Complete Graph



• 
$$\mid \mathcal{M}_{G} \mid = 2$$

 ⟨AC − BD, AC − EF, BD − EF⟩ seems like a more complete description of the toric ideal.

• The set  ${AC-BD, AC-EF, BD-EF}$ forms what is called a **Graver Basis** for the ideal  $I_G$ .

AC - BD-(AC - EF)

EF - BD

### Notation: $\mathcal{G}_{\textit{G}}$ - Graver Basis

### Definition

- A binomial  $x^{v^+} x^{v^-} \in I_G$  is called **primitive** if  $\nexists$  another binomial  $x^{u^+} x^{u^-} \in I_G$  s.t.  $x^{u^+} | x^{v^+}$  and  $x^{u^-} | x^{v^-}$ .
- The set of all primitive binomials in  $I_G$  is called its **Graver basis** and is denoted  $\mathcal{G}_G$ .

# Fact: $\mathcal{M}_G \subset \mathcal{G}_G$

Bryan Brown, Laura Lyman, Amy Nesky (Bei

Toric Graph Ideals

July 31st, 2013 11 / 21

メロト メポト メヨト メヨト

3

# **BIG QUESTION:**

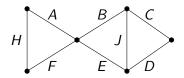
# • For what graphs G is $M_G = \mathcal{G}_G$ ?

Bryan Brown, Laura Lyman, Amy Nesky (Bei

Toric Graph Ideals

July 31st, 2013 12 / 21

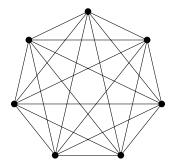
# An Example of When $\mathcal{M}_G \neq \mathcal{G}_G$



$$\mathcal{M}_{G} = \{AJF - BEH, BD - CE\}$$
  
$$\mathcal{G}_{G} = \{AJF - BEH, BD - CE, CAJF - DB^{2}H, DAJF - CE^{2}H\}$$

Note:  $CAJF - DB^2H = BH(CE - BD) + C(AJF - BEH)$ 

## $\mathcal{M}_{\textit{G}}$ and $\mathcal{G}_{\textit{G}}$ Can Be Vastly Different Sizes



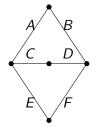
$$\mathcal{M}_{G} = 70$$
, but  $\mathcal{G}_{G} = 3360$ 

Bryan Brown, Laura Lyman, Amy Nesky (Bei



3

<ロ> (日) (日) (日) (日) (日)

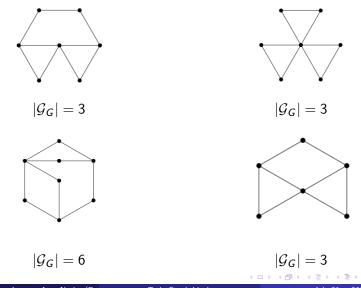


(Minimal) closed even walks are all cycles, corresponding to

 $p_1 = AD - BC$ 

 $p_2 = CF - DE$   $p_3 = AF - BE$ but  $p_i \notin \langle p_j, p_k \rangle$ for  $\{i, j, k\} = \{1, 2, 3\}$ 

A Few More Examples Where  $\mathcal{M}_{G} = \mathcal{G}_{G}$ 

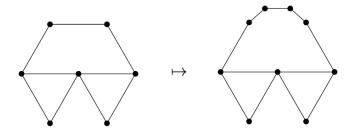


Bryan Brown, Laura Lyman, Amy Nesky (Bei

Toric Graph Ideals

3

# Contructing Larger Graphs Where $\mathcal{M}_G = \mathcal{G}_G$ From Smaller Ones



• Another kind of basis with some algorithmically nice properities is called a **Universal Gröbner Basis**, denoted  $U_G$ , and this set lays nestled in between the minimal generating set of a toric ideal and the Graver Basis

### Proposition

 $\mathcal{M}_G \subset \mathcal{U}_G \subset \mathcal{G}_G$  for any minimal generating set  $\mathcal{M}_G$ 

### Theorem

 $\mathcal{M}_G = \mathcal{U}_G \Leftrightarrow \mathcal{M}_G = \mathcal{G}_G$ . If  $I_G$  sastisfies either of these conditions we call it robust.

#### Theorem

 $I_G$  is robust  $\Leftrightarrow$  (Graph theoretic conditions).

### Theorem

 $\mathcal{M}_G = \mathcal{U}_G \Leftrightarrow \mathcal{M}_G = \mathcal{G}_G$ . If  $I_G$  sastisfies either of these conditions we call it robust.

#### Theorem

 $I_G$  is robust  $\Leftrightarrow$  (Graph theoretic conditions).

### Thank You!

Bryan Brown, Laura Lyman, Amy Nesky (Bei

Toric Graph Ideals

July 31st, 2013 20 / 21

Sturmfels, Bernd. *Gröbner Bases and Convex Polytopes.* American Mathematical Society: Providence, RI, 1991.

э