FIF Technique (transcribed from H. R. Horvitz notes)

[This is more for historical interest, than as a protocol to use - it is as exact a transcription of the material as possible. Done while I was a postdoc in the Kenyon lab (1988-93), from a photocopy of Bob’s handwritten notes, presumably from Cynthia’s files, brought with her from the MRC(?). I’m not sure what the date of those notes were. Additional note: the MS Word doc ‘date created’ metadata for the transcription indicates ‘Feb 2, 1990, 1:50 PM’ -- CL]

1. Ice in ice bucket! flatten
2. Black disc (actually from Wild Stage) put into large petri dish
 Sit flat on ice, but not for too long (> condensation problems)
3. Cover slip 22x64 mm. No. 1 1/2 (sturdier; good for liq. N\textsubscript{2})
 Clean w/ Kimwipe
 Use "Staedtler Lumocolor 317 waterproof ("permanent") Pen"
 > Note: new (PCB-free; brown) Zeiss oil dissolves this ink.
 Drawn line around edge > visible after putting into liq. N\textsubscript{2}
 If many samples, mark off areas w/ "Chinagraph" (white) pen (waxy pencil)
 (keeps specimens apart (blocks H\textsubscript{2}O flow); [?unclear?] mark on side for specimens, whereas if marking w/black pen, do non-specimen side)
 Write labels >> on non-specimen side
4. Place wrong side up on disk
5. Buy ovalbumin (lyophilized)
 Make 10\% soln. in dH\textsubscript{2}O
 Store frozen
 Cool ovalbumin soln in ice bucket
6. Pull out Pasteur pipette (e.g. break on dish; don’t make super thin point).
 Use small Pastuer pipette bulb (easier to control)
7. Prepare dessicator.
 Make sure its airtight!!
 Empty and rinse petri dish in bottom (if old P\textsubscript{2}O\textsubscript{5} still white and solid, simply top up; o’e, refill. if rinsed, be sure to dry thoroughly!)
 Put P\textsubscript{2}O\textsubscript{5} (phosphoric oxide) into Petri dish. Use a lot. [=phosphorus pentoxide]
 (Transfer with large spatula) Spread P\textsubscript{2}O\textsubscript{5} around petri dish.
 Above Petri dish w/ P\textsubscript{2}O\textsubscript{5} is metal screen.
 above screen is upside-down petri dish, which will support aluminum block
 Clean (i.e., run hand around) rim of dessicator
 Also clean tubing. Occ’ly, grease w/ silicone high vacuum grease
 Clean top, [?unclear?] valve (no air bubbles) etc.
 Note: pump must be good (test on vacuum gauge).
 Leave dessicator covered but not closed.
 Put aluminum blocks in ice bucket
8. Get liq. N\textsubscript{2}
9. Worms. Bit of food, but plenty of worms of all ages.
 (just about to clear). (Too many bacteria > higher background)
10. Put empty ice bucket, slightly tilted, next to ice bucket w/ ice and ovalbumin
 Put petri plate w/ black disc, w/ coverslip on top of ice in ice bucket
 Put small drop of ovalbumin on to spot for worms
 (Note: too much ovalbumin > high background; can use 0.05M NaCl [?unclear?] M9
 ...when not singling worms)
11. Transfer worms
 Scrape edge of paper strip across plate.
put into drop. Push around to transfer. Spread a bit
[Put strip into drop by edge; don't spread drop yet]
Try to avoid bacteria.
If starting to dry, breathe on coverslip.
CRUCIAL: do fast; don't let dry.
12. Pour liq. N\textsubscript{2} into empty ice bucket
13. Spread worms in each area evenly out w/ paper strips. (If not spread
 enough > increased background; too much spread > drying)
14. Put coverslip into liq. N\textsubscript{2}, (using fine forceps)
 Put edgewise down.
15. Put liq. N\textsubscript{2} into ice bucket w/aluminum block.
 covering one block (bottom) and 1/2 way up the other
16. Put on pump (but with TAP SHUT)
17. Wait until liq. N\textsubscript{2} down well below level of top of bottom block
 and until "N\textsubscript{2}" drops stopped dancing
Then, put coverslips, specimen side up, on to bottom block
 Put top block over.
 Transfer (wearing glove) to dessicator. Close. Turn tap.
TRANSFER MUST BE RAPID!
18. Pump for 1 hr. Close tap. Pull off pipe. Turn off pump. Tape (cellophane) piping on!
19. Wait ~ 24 hrs. (or less)
20. If less heat with heat lamp (~ 1' from dessicator).
 Normal protocol: Heat 20', cool 15', heat 20', cool 15', open
 Prob. best to do some heating no matter what > dry
21. Paraformaldehyde, kept for at least 1 week over 70% humidity (= H\textsubscript{2}SO\textsubscript{4} + H\textsubscript{2}O) in petri
dish, in dessicator [?unclear?] (see next page)

{from next page - Note: 70% relative humidity = 33% H\textsubscript{2}SO\textsubscript{4} (weight by weight?) = 33 ml
conc. H\textsubscript{2}SO\textsubscript{4} into (slowly) 134 ml d H\textsubscript{2}O. Let it cool)
 NOT kept under vacuum, but in closed dessicator > 70% r.h.
 Put ~1/2 teaspoon of 70% r.h. paraformaldehyde into "fruit jar"
 w/ copper([?unclear?]) screening for support
 Seal tightly
22. Open dessicator by SLOWLY releasing vacuum.
 Then rapidly remove upper block (which should NOT be cold)
 and, w/ fine forceps, transfer coverslip(s) to jar, standing up.
TRANSFER RAPIDLY
23. Place jar at back (for people-protection!) of 67° C (lower temp prob okay, since prob
 lower in original protocol) oven for 1 hour.
24. Remove jar from oven.
 Put 3-4 drops of old (white; w/PCB) Zeiss immersion oil onto
 slide. Note: new oil dissolves ink. Also, more hydrophilic >
 could be worse.
 Slowly and carefully, put coverslip (worm-side down) onto
 slide; don't move unnec'ly, or else worms will
 disintegrate
 If nec'y, add more oil to edges.
25. Sit at least 1 hr. (ON prob OK) IN DARK.
26. Empty paraformaldehyde into sink in fumehood; wash down w/H\textsubscript{2}O. Do not wash jar,
 but reclose.
Here is the FIF method as it appears in Sulston et al., 1975 (pp 215-216):

Formaldehyde induced fluorescence (FIF)

The general method has been reviewed recently (Fuxe and Jonsson, '73).

<i>C. elegans</i>

Two aluminum blocks (9 X 7 X 4 cm) were milled so as to fit together leaving a 1 mm gap between them. The blocks were cooled in liquid nitrogen. The nematodes were placed in the minimum volume of 0.1 M NaCl on a cover slip, quenched in liquid nitrogen, and transferred to the space between the blocks. The assembly was placed on a plastic petri dish over P₂O₅ in a desiccator, which was immediately evacuated to about 0.01 torr. After 30 minutes, the desiccator was sealed and left at room temperature. If the drying time was less than 24 hours, the blocks were warmed with a heat lamp before the desiccator was opened. The cover slip was transferred, with no special precautions, to a 1-lb preserving jar containing 1-2 g of paraformaldehyde equilibrated at 70% humidity. The jar was sealed, and placed in an oven at 67° for one hour. The nematodes, still supported on the cover slip, were mounted in Zeiss immersion oil and allowed to clear for several hours before examination.

For multiple assays, each 22 X 64 mm cover slip carried ten samples separated from one another by Chinagraph lines and two cover slips were placed between a pair of blocks. Usually the nematodes were transferred from plate cultures and spread out by means of a paper strip, which also served to absorb excess saline. During transfers, the cover slip was kept on ice to prevent evaporation; if it became too wet, a plastic petri dish was interposed between it and the ice. When individual nematodes were examined, as in genetic mapping, they were transferred with a pointed stick to 10% ovalbumin.