Additional Problems Assignment 10

1. Find the exact value of the following (doesn't involve decimals):
(a) $\sin \left(225^{\circ}\right)$
(b) $\cos \left(75^{\circ}\right)$
(c) $\tan \left(225^{\circ}\right)$
2. Find the exact value of this:
(a) $\sin \left(155^{\circ}\right) \cos \left(25^{\circ}\right)+\sin \left(25^{\circ}\right) \cos \left(155^{\circ}\right)$
(b) $\cos \left(\frac{7 \pi}{12}\right) \cos \left(\frac{3 \pi}{12}\right)-\sin \left(\frac{7 \pi}{12}\right) \sin \left(\frac{3 \pi}{12}\right)$
3. An underwater telephone cable is to cross a shallow lake from point A to point B. Stakes are located at A, B and C. Distance $A C$ is measured to be $112 \mathrm{~m} \angle C A B$ to be 118.4°, and $\angle A B C$ to be 19.2°. Find the distance $A B$.

4. To estimate the length $C B$ of the lake in the figure that follows, a surveyor measures $A B$ and $A C$ to 89 m and 75 m , respectively, and $\angle C A B$ to be 95°. Find the approximate length of the lake.

5. Find the exact value of $\sin (2 \theta), \cos (2 \theta)$, and $\tan (2 \theta)$, given:
(a) $\sin (\theta)=3 / 5$ with $0 \leq \theta \leq \frac{\pi}{2}$.
(b) $\sin (\theta)=3 / 5$ with $\frac{\pi}{2} \leq \theta \leq \pi$.
6. Considered a general triangle labeled as below (note it can either look like (a) or (b)).

(a) Suppose $a=17, c=14$, and $B=30^{\circ}$ find b.
(b) Suppose $b=17, c=12$, and $A=24^{\circ}$ find B.
(c) Suppose $c=189, a=150$, and $C=85^{\circ}$ find A.
(d) $a=6.34, b=7.30, c=9.98$ find A.
7. Verify the following identity:

$$
\tan (\alpha-\beta)=\frac{\tan (\alpha)-\tan (\beta)}{1+\tan (\alpha) \tan (\beta)}
$$

