Additional Problems Assignment 10

1. In class we found a formula for the trig function for $\alpha + \beta$ as long as $\alpha + \beta$ is in the first quadrant. Now we look at the case where $\alpha + \beta$ is in the second quadrant. Consider the following picture:

- (a) Argue that $\angle BCD$ is α .
- (b) From the diagram what ratio of lengths represents $\sin(\alpha + \beta)$ and $\cos(\alpha + \beta)$. Remember that this is taking place in the second quadrant.
- (c) Using a similar approach to what we did in class show $\sin(\alpha+\beta) = \sin(\alpha)\cos(\beta) + \sin(\beta)\cos(\alpha)$ in this case too. Have fun with this!
- (d) Using a similar approach to what we did in class show $\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) \sin(\alpha)\sin(\beta)$ in this case too.