Challenge Problem for September 28, 2008

1. In class we defined $S_{2 n}=\frac{T_{n}+2 M_{n}}{3}$. Show that

$$
S_{2 n}=\frac{\Delta x}{3}\left(f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+\cdots+2 f\left(x_{2 n-2}\right)+4 f\left(x_{2 n-1}\right)+f\left(2 x_{n}\right)\right) .
$$

Hint: Remember the number of subintervals in T_{n}, M_{n} and $S_{2 n}$ are different hence Δx is different.

