1. Show that $y=x-x^{-1}$ is a solution of the differential equation $x y^{\prime}+y=2 x$.
2. Verify that $y=\sin (x) \cos (x)-\cos (x)$ is a solution of the initial value problem $y^{\prime}+(\tan x) y=\cos ^{2} x$ and $y(0)=1$ on the interval $-\pi / 2<x<\pi / 2$.
3. Remember in class we showed that the spring mass system was governed by the differential equation $m x^{\prime \prime}=-k x$.
(a) For what values of k does the function $x=\cos (k t)$ satisfy the differential equation $4 x^{\prime \prime}=$ $-25 x$?
(b) For those values of k, verify that every member of the family of functions $x=A \sin (k t)+$ $B \cos (k t)$ is also a solution.
4. Which of the following functions are solutions of the differential equation $y^{\prime \prime}+y=\sin (x)$?
(a) $y=\sin x$
(b) $y=\cos x$
(c) $y=\frac{1}{2} x \sin x$
(d) $y=-\frac{1}{2} x \cos x$
