Math 160 Logic Assignment # 12

- Let f: R → R be defined by f(x) = x² + 1. Determine the following (with minimal explanation):
 (a) f([-1,2])
 - (a) f([-1, 2])
 - (b) $f^{-1}([-1,2])$
 - (c) $f(\{3,4,5\})$
 - (d) $f^{-1}(\{3,4,5\})$
 - (e) Is $3 \in f(\mathbb{Q})$?
 - (f) Is $3 \in f^{-1}(\mathbb{Q})$?
 - (g) Does the function f^{-1} exist? If so describe it.
 - (h) Find three sets, $A \subseteq \mathbb{R}$ such that f(A) = [5, 17].
- 2. Let $f: X \to Y$ be a function and $A_1, A_2 \subseteq X$ and $B_1, B_2 \subseteq Y$. Prove or give a counterexample for each of the following. If the statement is false make a true statement (with proof) by adding either the condition that f is injective or f is surjective.
 - (a) If A_1, A_2 are disjoint then $f(A_1)$ and $f(A_2)$ are disjoint.
 - (b) If B_1, B_2 are disjoint then $f^{-1}(B_1)$ and $f^{-1}(B_2)$ are disjoint.
- 3. Let $f: X \to Y$ be a function. For each of the following prove or give a counterecample.
 - (a) $f(\emptyset) = \emptyset$.
 - (b) $f^{-1}(\emptyset) = \emptyset$.
 - (c) If $A \subseteq X$ and $f(A) = \emptyset$ then $A = \emptyset$.
 - (d) If $B \subseteq Y$ and $f^{-1}(B) = \emptyset$ then $B = \emptyset$.
- 4. Let S be a nonempty set. Define $f : \mathcal{P}(S) \to \mathcal{P}(S)$ by, if $A \in \mathcal{P}(S)$ then f(A) = S A. Prove f is a bijection and find f^{-1} .
- 5. Let $R : \mathbb{Z}[x] \to \mathscr{P}(\mathbb{R})$ defined by for all $p \in \mathbb{Z}[x]$,

$$R(p) = \{x \in \mathbb{R} : p(x) = 0\}$$

so R(p) is the set of the real roots of p.

- (a) Verify that $R(x^2 4x + 3) = \{1, 3\}.$
- (b) Find $R(x^3 x)$.
- (c) Find $p \in \mathbb{Z}[x]$ such that $R^{-1}(p) \neq \emptyset$ but $R^{-1}(p) \cap \mathbb{Q} = \emptyset$.
- (d) Show that $R^{-1}(\{\emptyset\}) \neq \emptyset$.
- (e) Find $R^{-1}(\{[0,1]\})$.