Math 160 Logic
 Assignment \# 9

Note I will use the symbol \wp to denote the power set. I have never been too happy with the options for power set in latex.

1. Suppose. $A \subseteq \mathbb{R}$ has the property that if $a, b \in A$ then $a+b \in A$ (i.e. A is closed under addition). Use induction to show that if $n \in \mathbb{N}$ and $a_{1}, a_{2}, \ldots, a_{n} \in A$ then $a_{1}+a_{2}+\ldots+a_{n} \in A$.
2. Let A, B, C be sets. Show that $(A \cup B) \times C=(A \times C) \cup(B \times C)$
3. Let $A=\{1,2,3,4,\{3,4\}\}, B=\{4,5,6\}, C=\{5,6,7,8,9\}$. Determine the following:
(a) Is $\{3,4\} \in A$?
(b) Is $\{3,4\} \in \wp(A)$?
(c) Is $\{3,4\} \subseteq \wp(A)$?
(d) Is $\{3,\{3,4\}\} \in \wp(A)$?
(e) What is $|\wp(A)|$?
(f) Is $\{6,7\} \in \wp(B \cup C)$?
(g) Is $\{6,7\} \in \wp(B \cap C)$?
(h) What is $|\wp(B \cup C)|$?
(i) What is $|\wp(B \cap C)|$?
4. Let A, B, C be sets. Show that $C \subseteq A$ and $C \subseteq B$ if and only if $C \subseteq A \cap B$.
5. Let A, B be sets. Prove $\wp(A) \cup \wp(B) \subseteq \wp(A \cup B)$.
