Math 160 Logic Assignment # 9

Note I will use the symbol \mathscr{P} to denote the power set. I have never been too happy with the options for power set in latex.

- 1. Suppose. $A \subseteq \mathbb{R}$ has the property that if $a, b \in A$ then $a + b \in A$ (i.e. A is closed under addition). Use induction to show that if $n \in \mathbb{N}$ and $a_1, a_2, \ldots, a_n \in A$ then $a_1 + a_2 + \ldots + a_n \in A$.
- 2. Let A, B, C be sets. Show that $(A \cup B) \times C = (A \times C) \cup (B \times C)$
- 3. Let $A = \{1, 2, 3, 4, \{3, 4\}\}, B = \{4, 5, 6\}, C = \{5, 6, 7, 8, 9\}$. Determine the following:
 - (a) Is $\{3,4\} \in A$?
 - (b) Is $\{3,4\} \in \mathcal{P}(A)$?
 - (c) Is $\{3,4\} \subseteq \mathcal{P}(A)$?
 - (d) Is $\{3, \{3, 4\}\} \in \mathcal{P}(A)$?
 - (e) What is $|\mathcal{P}(A)|$?
 - (f) Is $\{6,7\} \in \mathcal{P}(B \cup C)$?
 - (g) Is $\{6,7\} \in \mathcal{P}(B \cap C)$?
 - (h) What is $|\mathcal{P}(B \cup C)|$?
 - (i) What is $|\mathscr{P}(B \cap C)|$?
- 4. Let A, B, C be sets. Show that $C \subseteq A$ and $C \subseteq B$ if and only if $C \subseteq A \cap B$.
- 5. Let A, B be sets. Prove $\mathscr{P}(A) \cup \mathscr{P}(B) \subseteq \mathscr{P}(A \cup B)$.