Math 160 Logic
 Assignment \# 10

1. In homework $\# 6$, you proved that any amount bigger than $¢ 12$ can be made using $¢ 3$ and $¢ 7$ cent stamps. In other words, any $n \geq 12$ can be written in the form $n=3 a+7 b$ where a, b are nonnegative integers. Now do this proof using the well ordered principle.
2. When we proved that $\sqrt{2}$ was irrational we used the following fact:

If $q \in \mathbb{Q}$ there exists $a \in \mathbb{Z}$ and $b \in \mathbb{N}$ such that $q=\frac{a}{b}$ and a and b have no common factors, that is $\nexists c \in \mathbb{N}$ with $c \geq 2$ such that $c \mid a$ and $c \mid b$.
Prove this by using the well ordered principle.
(Hint: Let $q \in \mathbb{Q}$ and $B=\left\{b \in \mathbb{N}: \exists a \in \mathbb{Z}\right.$ with $\left.q=\frac{a}{b}\right\}$. Argue $B \neq \emptyset$. Let $b_{0} \in B$ be the least element. Show that $q=\frac{a}{b_{0}}$ where a and b_{0} have no common factors.)
3. In class we proved for all $n \in \mathbb{N}$ there exists $m \in \mathbb{N} \cup\{0\}$ such that either $n=2 m$ or $n=2 m+1$ by using the well ordered principle. Prove it using induction.

