1. Consider the function $T : \mathbb{R}^3 \to \mathbb{R}^3$ defined by:

$$T\left(\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix}x_2\\0\\x_1+x_2+x_3\end{bmatrix}.$$

- (a) Show that T either is or is not a linear transformation.
- (b) If T is a linear transformation, find its corresponding matrix A.
- 2. Consider the function $T : \mathbb{R}^2 \to \mathbb{R}^3$ defined by:

$$T\left(\begin{bmatrix}x_1\\x_2\end{bmatrix}\right) = \begin{bmatrix}x_2\\x_1x_2\\x_2\end{bmatrix}.$$

- (a) Show that T either is or is not a linear transformation.
- (b) If T is a linear transformation, find its corresponding matrix A.
- 3. Let T be a function from \mathbb{R}^2 to \mathbb{R}^2 defined by taking a vector \vec{v} and rotating it clockwise by 120° and cutting the length in half.
 - (a) Show that T is a linear transformation (Hint:(Use what we did in class together with using exercise 2.1: 45).
 - (b) Find the corresponding matrix A for T.