Additional Problems Assignment 8

1. Consider the function $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by:

$$
T\left(\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{2} \\
0 \\
x_{1}+x_{2}+x_{3}
\end{array}\right] .
$$

(a) Show that T either is or is not a linear transformation.
(b) If T is a linear transformation, find its corresponding matrix A.
2. Consider the function $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by:

$$
T\left(\left[\begin{array}{c}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{2} \\
x_{1} x_{2} \\
x_{2}
\end{array}\right] .
$$

(a) Show that T either is or is not a linear transformation.
(b) If T is a linear transformation, find its corresponding matrix A.
3. Let T be a function from \mathbb{R}^{2} to \mathbb{R}^{2} defined by taking a vector \vec{v} and rotating it clockwise by 120° and cutting the length in half.
(a) Show that T is a linear transformation (Hint:(Use what we did in class together with using exercise 2.1: 45).
(b) Find the corresponding matrix A for T.

