- 1. Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ be a general 2×2 matrix.
 - (a) Suppose B is formed from A by swapping the rows. Show det $B = -\det A$.
 - (b) Suppose B is formed from A by multiplying one row by α and adding it to the other row. Show det $B = \det A$.
- 2. Suppose A is an $n \times n$ upper triangual matrix with i, j-entry a_{ij} . Note that $a_{ij} = 0$ when i > j. Use induction to prove det $A = a_{11}a_{22}\ldots a_{nn}$. That is det(A) is the product of the diagonal elements. (Hint use the first column).
- 3. Prove det $I_n = 1$ for all n.