Additional Problems Assignment 31

1. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be a general 2×2 matrix.
(a) Suppose B is formed from A by swapping the rows. Show $\operatorname{det} B=-\operatorname{det} A$.
(b) Suppose B is formed from A by multiplying one row by α and adding it to the other row. Show $\operatorname{det} B=\operatorname{det} A$.
2. Suppose A is an $n \times n$ upper triangualr matrix with i, j-entry $a_{i j}$. Note that $a_{i j}=0$ when $i>j$. Use induction to prove $\operatorname{det} A=a_{11} a_{22} \ldots a_{n n}$. That is $\operatorname{det}(A)$ is the product of the diagonal elements. (Hint use the first column).
3. Prove $\operatorname{det} I_{n}=1$ for all n.
