- 1. Let V_1 and V_2 be vector spaces and $T: V_1 \to V_2$ be a linear transformation. Show Im(T) is a subspace of V_2 .
- 2. Suppose V is a vector space and \mathcal{B} is a basis. Show for $f, g \in V$ and $k \in \mathbb{R}$:
 - $\begin{aligned} \text{(a)} \quad [f+g]_{\mathcal{B}} &= [f]_{\mathcal{B}} + [g]_{\mathcal{B}} \\ \text{(b)} \quad [kf]_{\mathcal{B}} &= k \, [f]_{\mathcal{B}} \end{aligned}$