$\begin{array}{c} \text{Math 320 Linear Algebra} \\ \text{Assignment } \# \ 12 \end{array}$

1. Consider

$$A = \begin{bmatrix} 1 & -2 \\ 1 & -3 \\ 4 & -1 \end{bmatrix}, \qquad B = \begin{bmatrix} -2 & 1 & y \\ x & 2 & 1 \end{bmatrix}, \qquad C = \begin{bmatrix} 10 & -3 & 2 \\ 16 & -5 & 1 \\ -2 & 2 & z \end{bmatrix}.$$

- (a) Find x, y and z so that AB = C.
- (b) Find BA
- 2. Consider:

$$A^{-1} = \begin{bmatrix} 3 & 2 & -1 \\ 1/2 & 0 & 4 \\ -2 & 1 & -2 \end{bmatrix}, \qquad B^{-1} = \begin{bmatrix} 3/2 & -2 & 1 \\ 3 & 0 & -4 \\ 0 & 1 & -2 \end{bmatrix}.$$

Suppose C = AB. Find C^{-1} .

3. In the last homework you should that if $T_1: W \to V$ and $T_2: V \to U$ are linear transformations then

$$\mathscr{R}(T_2 \circ T_1) \leq \mathscr{R}(T_2)$$
$$\mathscr{N}(T_1) \leq \mathscr{N}(T_2 \circ T_1).$$

You may use those results in the following. Let $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$.

(a) Show that $\operatorname{rank}(AB) \leq \operatorname{rank}(A)$.

- (b) Show that $\operatorname{rank}(AB) \leq \operatorname{rank}(B)$.
- (c) Show that $\operatorname{rank}(AB) \leq \min(m, n, p)$. (Note $\min(m, n, p)$ is the smallest of the three numbers m, n and p. That is show $\operatorname{rank}(A) \leq m$, $\operatorname{rank}(A) \leq n$, and $\operatorname{rank}(A) \leq p$.)
- (d) Suppose \vec{w}, \vec{v} are non-zero elements of $\mathbb{R}^n = \mathbb{R}^{n \times 1}$. Let $A = \vec{w}\vec{v}^T$.
 - i. What is the rank(A)?

ii. Let $\vec{w} = \begin{bmatrix} 3\\1\\-1 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} 0\\12\\1 \end{bmatrix}$. Calculate A in this case.

- 4. Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and define $\det(A) = ad bc$.
 - (a) Show that if det(A) = 0 then A is singular. (Hint two cases $a \neq 0$ and see homework# 8 and a = 0.)
 - (b) Conversely show that if $\det(A) \neq 0$ then A is invertible and $A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$.
- 5. Consider:

$$A = \begin{bmatrix} 0 & 0 & 0 & 0 & -2 & 5 \\ 0 & 0 & 1 & -1 & -2 & 1 \\ 0 & 0 & 0 & 0 & -2 & 4 \\ 1 & 2 & 3 & 5 & -1 & 2 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 2 & 3 & 5 & -1 & 2 \\ 0 & 0 & 1 & -1 & -2 & 1 \\ 0 & 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

B is the output of doing Gaussian elimination on A.

(a) Find elementry matrices E_1, E_2, \ldots, E_r such that:

$$E_r E_{r_1} \dots E_2 E_1 A = B$$

- (b) Find an invertible matrix C such that CA = B.
- (c) Do the matrix multiplication to show that indeed CA = B.
- (d) Find E₁⁻¹, E₂⁻¹,..., E_r⁻¹ (that is find the inverse of each of the elementary matrices found about).
- (e) Use the previous part to C^{-1} .
- (f) Verify by matrix multiplication that $A = C^{-1}B$.