Math 320 Linear Algebra Assignment \# 12

1. Consider

$$
A=\left[\begin{array}{cc}
1 & -2 \\
1 & -3 \\
4 & -1
\end{array}\right], \quad B=\left[\begin{array}{ccc}
-2 & 1 & y \\
x & 2 & 1
\end{array}\right], \quad C=\left[\begin{array}{ccc}
10 & -3 & 2 \\
16 & -5 & 1 \\
-2 & 2 & z
\end{array}\right] .
$$

(a) Find x, y and z so that $A B=C$.
(b) Find $B A$
2. Consider:

$$
A^{-1}=\left[\begin{array}{ccc}
3 & 2 & -1 \\
1 / 2 & 0 & 4 \\
-2 & 1 & -2
\end{array}\right], \quad B^{-1}=\left[\begin{array}{ccc}
3 / 2 & -2 & 1 \\
3 & 0 & -4 \\
0 & 1 & -2
\end{array}\right] .
$$

Suppose $C=A B$. Find C^{-1}.
3. In the last homework you should that if $T_{1}: W \rightarrow V$ and $T_{2}: V \rightarrow U$ are linear transformations then

$$
\begin{aligned}
\mathscr{R}\left(T_{2} \circ T_{1}\right) & \leq \mathscr{R}\left(T_{2}\right) \\
\mathscr{N}\left(T_{1}\right) & \leq \mathscr{N}\left(T_{2} \circ T_{1}\right) .
\end{aligned}
$$

You may use those results in the following. Let $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$.
(a) Show that $\operatorname{rank}(A B) \leq \operatorname{rank}(A)$.
(b) Show that $\operatorname{rank}(A B) \leq \operatorname{rank}(B)$.
(c) Show that $\operatorname{rank}(A B) \leq \min (m, n, p)$. (Note $\min (m, n, p)$ is the smallest of the three numbers m, n and p. That is $\operatorname{show} \operatorname{rank}(A) \leq m, \operatorname{rank}(A) \leq n$, and $\operatorname{rank}(A) \leq p$.)
(d) Suppose \vec{w}, \vec{v} are non-zero elements of $\mathbb{R}^{n}=\mathbb{R}^{n \times 1}$. Let $A=\vec{w} \vec{v}^{T}$.
i. What is the $\operatorname{rank}(A)$?
ii. Let $\vec{w}=\left[\begin{array}{c}3 \\ 1 \\ -1\end{array}\right]$ and $\vec{v}=\left[\begin{array}{c}0 \\ 12 \\ 1\end{array}\right]$. Calculate A in this case.
4. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and $\operatorname{define} \operatorname{det}(A)=a d-b c$.
(a) Show that if $\operatorname{det}(A)=0$ then A is singular. (Hint two cases $a \neq 0$ and see homework\# 8 and $a=0$.)
(b) Conversely show that if $\operatorname{det}(A) \neq 0$ then A is invertible and $A^{-1}=\frac{1}{\operatorname{det}(A)}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$.
5. Consider:

$$
A=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & -2 & 5 \\
0 & 0 & 1 & -1 & -2 & 1 \\
0 & 0 & 0 & 0 & -2 & 4 \\
1 & 2 & 3 & 5 & -1 & 2
\end{array}\right], \quad B=\left[\begin{array}{cccccc}
1 & 2 & 3 & 5 & -1 & 2 \\
0 & 0 & 1 & -1 & -2 & 1 \\
0 & 0 & 0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

B is the output of doing Gaussian elimination on A.
(a) Find elementry matrices $E_{1}, E_{2}, \ldots, E_{r}$ such that:

$$
E_{r} E_{r_{1}} \ldots E_{2} E_{1} A=B
$$

(b) Find an invertible matrix C such that $C A=B$.
(c) Do the matrix multiplication to show that indeed $C A=B$.
(d) Find $E_{1}^{-1}, E_{2}^{-1}, \ldots, E_{r}^{-1}$ (that is find the inverse of each of the elementary matrices found about).
(e) Use the previous part to C^{-1}.
(f) Verify by matrix multiplication that $A=C^{-1} B$.

