$\begin{array}{c} \text{Math 320 Linear Algebra} \\ \text{Assignment $\#$ 6} \end{array}$

For each of the vector spaces V and set of vectors A below do the following: i) determine if the set of vectors A is linearly independent in the vector space V (either find a non-trivial relation or show one does not exist). If the set is linearly dependent then also do: ii) remove as few vectors as possible from A to create a new linearly independent set of vectors called A' iii) show the new set, A', is linearly independent.

(a)
$$V = \mathbb{R}^{2 \times 2}$$
 and
 $\mathscr{A} = \left\{ \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \right\}$
(b) $V = P_4$ and $\mathscr{A} = \{x^2 - x, x^2 + x, x^3, x^2 + x^3, 1\}$
(c) $V = \mathbb{R}^5$ and
 $\mathscr{A} = \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 3 \\ 6 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ -18 \\ -36 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 6 \\ 12 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ -5 \\ 9 \\ 18 \\ -15 \end{bmatrix} \right\}$

- 2. Let $V = \mathscr{F}(\mathbb{R}, \mathbb{R})$. Determine with proof if the following are linearly independent.
 - (a) {sin(x), cos(x)}
 (Hint: the 0 in V is the zero function call it 0, that is the function g so that g(x) = 0 for all x ∈ ℝ. So suppose that a sin(x) + b cos(x) is the zero function use appropriate values of x to show that a = b = 0.)

(b)
$$\{e^x, x\}$$

(c) $\{\sin(x), e^x, \sin^2(x), \cos^2(x), 3\}$ (Note: 3 is the constant function 3.)