Math 320 Linear Algebra
 Assignment \# 6

1. For each of the vector spaces V and set of vectors \mathscr{A} below do the following: i) determine if the set of vectors \mathscr{A} is linearly independent in the vector space V (either find a non-trivial relation or show one does not exist). If the set is linearly dependent then also do: ii) remove as few vectors as possible from \mathscr{A} to create a new linearly independent set of vectors called \mathscr{A}^{\prime} iii) show the new set, \mathscr{A}^{\prime}, is linearly independent.
(a) $V=\mathbb{R}^{2 \times 2}$ and

$$
\mathscr{A}=\left\{\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right]\right\}
$$

(b) $V=P_{4}$ and $\mathscr{A}=\left\{x^{2}-x, x^{2}+x, x^{3}, x^{2}+x^{3}, 1\right\}$
(c) $V=\mathbb{R}^{5}$ and

$$
\mathscr{A}=\left\{\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
3 \\
6 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
-18 \\
-36 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
2 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
6 \\
12 \\
3
\end{array}\right],\left[\begin{array}{c}
1 \\
-5 \\
9 \\
18 \\
-15
\end{array}\right]\right\}
$$

2. Let $V=\mathscr{F}(\mathbb{R}, \mathbb{R})$. Determine with proof if the following are linearly independent.
(a) $\{\sin (x), \cos (x)\}$
(Hint: the 0 in V is the zero function call it $\mathbf{0}$, that is the function g so that $g(x)=0$ for all $x \in \mathbb{R}$. So suppose that $a \sin (x)+b \cos (x)$ is the zero function use appropriate values of x to show that $a=b=0$.)
(b) $\left\{e^{x}, x\right\}$
(c) $\left\{\sin (x), e^{x}, \sin ^{2}(x), \cos ^{2}(x), 3\right\}$ (Note: 3 is the constant function 3.)
