Math 320 Linear Algebra Assignment \# 11

1. Find the matrix of the following transformations:
(a) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by:

$$
T\left(\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
-8 \\
14
\end{array}\right], \quad T\left(\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
-8 \\
-14
\end{array}\right], \quad T\left(\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
-2 \\
-14
\end{array}\right]
$$

(b) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ where $T(\vec{v})$ is \vec{v} after its be rotated by 30° clockwise.
(c) $T: P_{3} \rightarrow \mathbb{R}^{2}$ where $T(p(x))=\left[\begin{array}{l}p(3) \\ p(1)\end{array}\right]$ with respect of the the basis on $P_{3} \mathscr{B}=\left(x^{2}, x^{3}+x^{2}, x^{3}+\right.$ $\left.x^{2}+x, 1\right)$ and the standard basis on \mathbb{R}^{2}.
(d) $T: P_{3} \rightarrow P_{2}$ where $T(p(x))=p^{\prime}(x)$ with respect of the the standard basis on P_{3} (i.e. $\mathscr{B}=$ $\left.\left(1, x, x^{2}, x^{3}\right)\right)$ and the standard basis on P_{2}.
2. Let $T_{1}: W \rightarrow V$ and $T_{2}: V \rightarrow U$. Show that:
(a) $\mathscr{R}\left(T_{2} \circ T_{1}\right) \leq \mathscr{R}\left(T_{2}\right)$
(b) $\mathscr{N}\left(T_{1}\right) \leq \mathscr{N}\left(T_{2} \circ T_{1}\right)$

