Math 320 Linear Algebra Assignment # 14

- 1. Suppose that $A, B, C \in \mathbb{R}^{n \times n}$ with $A \sim B$ and $B \sim C$. Show that $A \sim C$.
- 2. Let:

$$A = \begin{bmatrix} 2 & 5 & 0 & 3 \\ -1 & a & 2 & 5 \\ 0 & 2 & 0 & -1 \\ -2 & -1 & 0 & 0 \end{bmatrix}$$

- (a) Find det(A)
- (b) Notice that det(A) does not depend on a. Are there any other values that can be change (while not changing any other values) that does not change the determinate?
- 3. Suppose that $\lambda \in \mathbb{R}$ is an eigenvalue for $A \in \mathbb{R}^{n \times n}$. (That is there exists $\vec{v_0} \neq 0$ called an eigenvector such that $A\vec{v_0} = \lambda \vec{v_0}$). Let $E_{\lambda} = \{\vec{v} \in \mathbb{R}^n : A\vec{v} = \lambda v\}$. Show that E_{λ} is a subspace of \mathbb{R}^n .
- 4. Let

$$A = \begin{bmatrix} 14/3 & -5/3 & 1\\ 17/3 & -8/3 & 1\\ 1 & -1 & 2 \end{bmatrix}.$$

Suppose that

$$\mathscr{B} = \left\{ \begin{bmatrix} 2\\2\\0 \end{bmatrix}, \begin{bmatrix} -1\\-1\\1 \end{bmatrix}, \begin{bmatrix} 1\\4\\1 \end{bmatrix} \right\}$$

is an eigenbasis for A (that is a basis consisting of eigenvectors).

- (a) What are the corresponding eignenvalues?
- (b) Find D and P so that $A = PDP^{-1}$.