Math 320 Linear Algebra Assignment \# 14

1. Suppose that $A, B, C \in \mathbb{R}^{n \times n}$ with $A \sim B$ and $B \sim C$. Show that $A \sim C$.
2. Let:

$$
A=\left[\begin{array}{cccc}
2 & 5 & 0 & 3 \\
-1 & a & 2 & 5 \\
0 & 2 & 0 & -1 \\
-2 & -1 & 0 & 0
\end{array}\right]
$$

(a) Find $\operatorname{det}(A)$
(b) Notice that $\operatorname{det}(A)$ does not depend on a. Are there any other values that can be change (while not changing any other values) that does not change the determinate?
3. Suppose that $\lambda \in \mathbb{R}$ is an eigenvalue for $A \in \mathbb{R}^{n \times n}$. (That is there exists $\overrightarrow{v_{0}} \neq 0$ called an eigenvector such that $\left.A \overrightarrow{v_{0}}=\lambda \overrightarrow{v_{0}}\right)$. Let $E_{\lambda}=\left\{\vec{v} \in \mathbb{R}^{n}: A \vec{v}=\lambda v\right\}$. Show that E_{λ} is a subspace of \mathbb{R}^{n}.
4. Let

$$
A=\left[\begin{array}{ccc}
14 / 3 & -5 / 3 & 1 \\
17 / 3 & -8 / 3 & 1 \\
1 & -1 & 2
\end{array}\right]
$$

Suppose that

$$
\mathscr{B}=\left\{\left[\begin{array}{l}
2 \\
2 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
4 \\
1
\end{array}\right]\right\}
$$

is an eigenbasis for A (that is a basis consisting of eigenvectors).
(a) What are the corresponding eignenvalues?
(b) Find D and P so that $A=P D P^{-1}$.

