$\begin{array}{c} \text{Math 320 Linear Algebra} \\ \text{Assignment $\# 7$} \end{array}$

1. Find the basis for the column space of A where

	3	6	-12	-3	1	6]
	0	0	5	2	10	-1
A =	0	0	0	1	3	-2
	-3	-6	12	3	-1	-5
	0	0	-12 5 0 12 10	4	20	-2

- 2. Let V be a vector space. Suppose $\vec{v}_1, \vec{v}_2, \vec{v}_3 \in V$ and $4\vec{v}_1 + 2\vec{v}_2 2\vec{v}_3 = \vec{v}_1 2\vec{v}_2 + 6\vec{v}_3$. Prove $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is not a basis for V.
- 3. Find the dimension of each of these vector spaces by finding a basis (with proof):

(a)
$$\mathbb{R}^{2 \times 2}$$

(b)
$$W = \left\{ \begin{bmatrix} a+2b\\0\\3a+b+c\\c+d \end{bmatrix} : a,b,c,d \in \mathbb{R} \right\}$$

- 4. Suppose V is a finite dimensional vector space and $W \leq V$ (i.e. W is a subspace of V). Show if the dim $(V) = \dim(W)$ then V = W.
- 5. Consider $W = \{ f \in P_3 : f(2) = 0 \} \le P_3.$
 - (a) Show $W \neq P_3$ by finding an element in $P_3 \setminus W$.
 - (b) Find a set of three linearly independent functions $\{p_1, p_2, p_3\}$ in W.
 - (c) Argue that this set is a basis. (Hint: What is the largest the dimension that W could be?)