Math 320 Linear Algebra Assignment \# 13

1. Consider

$$
A=\left[\begin{array}{ccc}
1 & -2 & 1 \\
0 & 0 & 4 \\
0 & a & -1
\end{array}\right]
$$

Given that $\operatorname{det}(A)=\frac{2}{3}$, find A (i.e. find a the only missing part of A).
2. Consider:

$$
C=\left[\begin{array}{cccc}
-2 & 2 & 4 & 1 \\
4 & -8 & -9 & 1 \\
-6 & -2 & 7 & 10 \\
0 & 8 & -7 & -5
\end{array}\right]
$$

(a) Show that $C=L U$ where:

$$
L=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-2 & 1 & 0 & 0 \\
3 & 2 & 1 & 0 \\
0 & -2 & 3 & 1
\end{array}\right] \quad U=\left[\begin{array}{cccc}
-2 & 2 & 4 & 1 \\
0 & -4 & -1 & 3 \\
0 & 0 & -3 & 1 \\
0 & 0 & 0 & -2
\end{array}\right]
$$

This is called the $L U$-decomposition for C where we can write a matrix as a product of a lower triangular matrix with diagonals of 1 and an upper triangular matrix. The way to get it is by using a modified version of the Gaussian elimination.
(b) Use this to find $\operatorname{det}(C)$.
3. Show that $(k A)^{T}=k A^{T}$.
4. Suppose that E is an elementary matrix.
(a) Show that E^{T} is an elementary matrix of the same type and $\operatorname{det}\left(E^{T}\right)=\operatorname{det}(E)$.
(b) Which type(s) of elementary matrices are orthogonal?
5. Suppose that A is orthogonal. Show that $\operatorname{det}(A)$ is either 1 or -1 .
6. Let:

$$
A=\left[\begin{array}{ccc}
2 & -2 & 1 \\
1 & 2 & 2 \\
2 & 1 & -2
\end{array}\right]
$$

Suppose $B=\frac{1}{3} A$.
(a) Show that B is orthogonal.
(b) Use this to find the possible values for $\operatorname{det}(A)$. (You don't need to find which one it is but you can for practice if you want).

